
i

Review Notice

Attached is a copy of the Return-Link Processor (RLP) Peripheral Components Interface (PCI)
Card Hardware Definition Document for your review. Please retain this sheet with the document,
as it will be used to track subsequent review cycles.

 Review
 Number

 Date To Date
 Completed

 Comments

RLP PCI Card Hardware Definition Document 521-H/W-065

Return-Link Processor (RLP)
Peripheral Components Interface (PCI) Card

Hardware Definition Document

August 1997

Responsible Engineer: Reviewed by:

____________________________________ ____________________________________
K. Winiecki Jr., Lead Engineer S. Linehan, Manager
Next Generation Systems Group Satellite Ground Systems Group
Lockheed-Martin Space Mission Systems RMS Technologies, Inc.

Approved by: Approved by:

____________________________________ ____________________________________
P. Ghuman, Technical Lead N. Speciale, Branch Head
Next Generation Systems Group Microelectronic Systems Branch
Code 521.0, NASA GSFC Code 521, NASA GSFC

Edited by:

L. Kane, Sr. Documentation Specialist
NYMA, Inc.

RLP PCI Card Hardware Definition Document 521-H/W-065

Goddard Space Flight Center
Greenbelt, Maryland

RLP PCI Card Hardware Definition Document 521-H/W-065

iii/iv

PREFACE

This document is under the configuration management of the Microelectronic Systems Branch
Configuration Control Board. Changes to this document shall be made by Documentation Change
Notice, reflected in text by change bars, or by complete revision.

Requests for copies of this document, along with questions and proposed changes, should be
addressed to:

Microelectronic Systems Branch, Code 520.9
Goddard Space Flight Center
Greenbelt, Maryland 20771

RLP PCI Card Hardware Definition Document 521-H/W-065

v/vi

DOCUMENT CHANGE INFORMATION

List of Effective Pages

Page Number Issue

i Original

1-1 thru Original

2-1 thru Original

3-1 thru Original

4-1 thru Original

5-1 thru Original

6-1 thru Original

AB-1 thru Original

A-1 thru Original

B-1 thru Original

C-1 thru Original

D-1 thru Original

E-1 thru Original

Document History

Issue Date Document Control Number

Original March 1997 N/A

RLP PCI Card Hardware Definition Document 521-H/W-065

vii

TABLE OF CONTENTS

SECTION 1 - GENERAL INFORMATION .. 1 -1
1.1 Purpose. .1-1
1.2 Scope. .1-1
1.3 General Description.. .1-1
1.4 Reference Documents. .1-3

SECTION 2 - FUNCTIONAL DESCRIPTION...2-1
2.1 Introduction. .2-1
2.2 Theory of Operation.. .2-2
2.3 Modes of Operation.. .2-3
2.4 Functional Elements. .2-3

2.4.1 PCI Interface. .2-3
2.4.2 Input Interface. .2-4
2.4.3 Parallel Integrated Frame Synchronizer..2-5
2.4.4 Reed-Solomon Error Detector/Corrector..2-5
2.4.5 CCSDS Service Processor... .2-5
2.4.6 Status Collector .2 -7
2.4.7 DMA Interface. .2-8
2.4.8 Baseboard Interface.. .2-9

2.5 Interrupts. .2-9

SECTION 3 - MEMORY MAP AND REGISTER DEFINITIONS .. .3-1
3.1 Introduction. .3-1
3.2 Memory Map. .3-1
3.3 Memory Map Description and Register Definitions...3-2

3.3.1 DMA-Chaining/User Memory $00 0000 .3 -2
3.3.2 Baseboard Interface Registers $04 0000...3-2

3.3.2.1 Control Register $04 0000..3-2
3.3.2.2 Interrupt Source Mask Register A $04 0004..............................3-3
3.3.2.3 Interrupt Source Mask Register B $04 0008..............................3-3
3.3.2.4 Interrupt Source Register A $04 000C.....................................3-4
3.3.2.5 Interrupt Source Register B $04 0010 .3-5

3.3.3 DMA Interface Transfer FIFO Output Space $08 0000...............................3-6
3.3.4 DMA Interface Controller $0A 0000 .3 -6

3.3.4.1 Channel A Control Register $0A 0000....................................3-6
3.3.4.2 Channel B Control Register $0A 0004....................................3-6
3.3.4.3 Channel A Fill Count Register $0A 0008 .3-7
3.3.4.4 Channel B Fill Count Register $0A 000C................................3-7
3.3.4.5 General Control Register $0A 0010.......................................3-8

3.3.5 DMA Interface Data FIFO Output Space $0C 0000....................................3-8
3.3.6 DMA Interface Transfer FIFO Input Space $0E 0000................................3-8
3.3.7 Status Collector $10 0000...3-9

3.3.7.1 Status Request Register $10 0000..3-9
3.3.7.2 Analog Values Register $10 0004...3-9

3.3.8 Status Data FIFO Input Space $10 8000...3-9
3.3.9 PIFS Register Space $11 0000... 3-10
3.3.10 RS Register Space $12 0000.. 3-10
3.3.11 RS Memory Space $13 0000.. 3-10
3.3.12 SP Register Space $14 0000.. 3-10
3.3.13 SP Frame Status Memory Space $15 0000 . 3-10
3.3.14 SP Packet Status Memory Space $16 0000 . 3-11

RLP PCI Card Hardware Definition Document 521-H/W-065

vii

3.3.15 SP Internally-Accessible Memory Space $18 0000................................. 3-11

RLP PCI Card Hardware Definition Document 521-H/W-065

viii

TABLE OF CONTENTS (CONT'D)

SECTION 4 - HARDWARE INSTALLATION..4-1
4.1 Introduction. .4-1
4.2 Hardware Elements. .4-1

4.2.1 I /O Panel .4-1
4.2.2 Internal Connectors.. .4-1

4.2.2.1 MACHPRO/JTAG Connector J6...4-2
4.2.2.2 Optional Sorting Module Connector J7..................................4-2
4.2.2.3 PCI Connector P1... .4-2

4.2.3 Jumpers and Switches .4 -3
4.3 Interfaces. .4-3

4.3.1 LED .4 -3
4.3.2 ECL Data Input Interface.... .4-4
4.3.3 RS-422/485 Data Input Interface .4 -4
4.3.4 External Timecode Reference Clock Input Interface...............................4-4
4.3.5 MACHPRO/JTAG Interface.. .4-4
4.3.6 Optional Sorting Module Interface..4-5
4.3.7 PCI Bus Interface.. .4-6

4.4 Installation Guidelines.. .4-7
4.5 Environmental Requirements .4 -7

SECTION 5 - OPERATING PRINCIPLES .5 -1
5.1 Introduction. .5-1
5.2 Preliminaries .5 -1
5.3 Setup. .5-1

5.3.1 Resets and Inputs.. .5-1
5.3.2 PCI Interface. .5-1
5.3.3 Input Interface. .5-2
5.3.4 PIFS. .5 -2
5.3.5 Data Routing Mode.. .5-2
5.3.6 RS .5 -2
5.3.7 SP. .5 -2
5.3.8 DMA Interface. .5-3
5.3.9 Status Collector .5 -3
5.3.10 Interrupts. .5-3
5.3.11 Programmable FIFO Flags.. .5-3
5.3.12 Baseboard Interface.. .5-4

5.4 Operation. .5-5
5.4.1 Wait for Data .5 -5
5.4.2 Initiate a Transfer. .5-5
5.4.3 Wait for DMA Completion .5 -6
5.4.4 Recheck for Data .5 -6
5.4.5 Flush Remaining Data.. .5-6

SECTION 6 - SCHEMATIC DESCRIPTION...6-1
6.1 Introduction. .6-1
6.2 Drawing Directory. .6-1
6.3 Drawing Description.. .6-1

6.3.1 Top Assembly. .6-1
6.3.2 Bottom Assembly. .6-1
6.3.3 Dril l Master. .6-2
6.3.4 Sheet 1. .6-2

RLP PCI Card Hardware Definition Document 521-H/W-065

viii

6.3.5 Sheet 2. .6-2
6.3.6 Sheet 3. .6-2
6.3.7 Sheet 4. .6-2
6.3.8 Sheet 5. .6-2
6.3.9 Sheet 6. .6-2

RLP PCI Card Hardware Definition Document 521-H/W-065

ix

TABLE OF CONTENTS (CONT'D)
6.3.10 Sheet 7. .6-2
6.3.11 Sheet 8. .6-2
6.3.12 Sheet 9. .6-2
6.3.13 Sheet 10. .6-2
6.3.14 Sheet 11. .6-3
6.3.15 Sheet 12. .6-3
6.3.16 Sheet 13. .6-3

6.4 Program Listing Directory.. .6-3
6.5 Program Listing Description.. .6-3

6.4.1 Baseboard Interface.. .6-3
6.4.2 DMA Interface. .6-3
6.4.3 Status Collector .6 -4
6.4.4 PCI Configuration ROM... .6-4

ABBREVIATIONS AND ACRONYMS...... .AB-1

APPENDIX A - BOARD LAYOUT AND SCHEMATICS..A-1

APPENDIX B - PROGRAMMABLE DEVICE LISTINGS .B-1

APPENDIX C - PARTS LIST.... .C-1

APPENDIX D - ENGINEERING CHANGE ORDERS...D-1

APPENDIX E - TEST PROCEDURES .E-1

LIST OF TABLES.C.LIST OF TABLES;

Table 3-1 RLP Memory Map.. .3-1
Table 3-2 Baseboard Interface Control Register $04 0000...3-2
Table 3-3 Baseboard Interface Interrupt Source Mask Register A $04 0004.....................3-3
Table 3-4 Baseboard Interface Interrupt Source Mask Register B $04 0008.....................3-3
Table 3-5 Baseboard Interface Interrupt Source Register A $04 000C............................3-4
Table 3-6 Baseboard Interface Interrupt Source Register B $04 0010.............................3-5
Table 3-7 DMA Interface Channel A Control Register $0A 0000.................................3-6
Table 3-8 DMA Interface Channel B Control Register $0A 0004.................................3-7
Table 3-9 DMA Interface Channel A Fill Count Register $0A 0008..............................3-7
Table 3-10 DMA Interface Channel B Fill Count Register $0A 000C .. .3-7
Table 3-11 DMA Interface General Control Register $0A 0010....................................3-8
Table 3-12 Status Collector Status Request Register $10 0000 .3-9
Table 3-13 Status Collector Analog Values Register $10 0004......................................3-9
Table 4-1 RLP I/O Panel Interfaces.. .4-3
Table 4-2 RLP MACHPRO/JTAG Connector J6 Signals...4-4
Table 4-3 RLP Optional Sorting Module Connector J7 Signals..................................4-5
Table 4-4 RLP PCI Bus Connector P1 Signals .4 -6
Table 6-1 RLP Drawing Directory.. .6-1
Table 6-2 RLP Program Listing Directory.... .6-3

RLP PCI Card Hardware Definition Document 521-H/W-065

x

LIST OF FIGURES.C.LIST OF FIGURES;

Figure 1-1 Code 521 Current Generation Return-Link Data Processing System...............1-1
Figure 1-2 Code 521 Next Generation Return-Link Processor PCI Card.........................1-2
Figure 1-3 Code 521 Next Generation Desktop Satellite Data Processor..........................1-2
Figure 2-1 Return-Link Processor PCI Card Functional Block Diagram .. .2-1
Figure 2-2 RLP PCI Card & Optional Sorting Module Detail.....................................2-4
Figure 2-3 RLP Service Processor Detail.. .2-6
Figure 2-4 RLP Status Collector & Baseboard Interface Detail...................................2-7
Figure 4-1 RLP I/O Panel .4 -1
Figure 4-2 RLP Internal Connector Placement...4-2
Figure 4-3 RLP MACHPRO/JTAG Connector J6...4-2
Figure 4-4 RLP Optional Sorting Module Connector J7..4-2
Figure 4-5 RLP PCI Connector P1 .4 -3

RLP PCI Card Hardware Definition Document 521-H/W-065

xi

 F EATURES

• Performs all telemetry return-link data processing functions for a ground station.

• Works in common Peripheral Components Interface (PCI)-compliant host computers.

• 0 to 300 Mbps nominal telemetry data input rate, 400 Mbps theoretical maximum.

• Emitter-coupled logic (ECL) differential, ECL single-ended, and RS-422/RS-485 bit-serial
telemetry data input.

• Byte-serial, bit-parallel telemetry data input direct from host computer.

• Optional timecode reference clock signal input from external source.

• Performs all functions of a telemetry data frame synchronizer (FS) on both Consultative
Committee for Space Data Systems (CCSDS) and non-CCSDS (Weather, etc.) data

• Performs all functions of a Reed-Solomon Error Detector/Corrector (RS) on frame-
synchronized data

• Performs all functions of a CCSDS Packet Telemetry and Advanced Orbiting Systems
(AOS), Networks, and Data Links Service Processor (SP) on frame-synchronized data.

• Sorts user-definable packet-level data into up to four packet service buffers, and sorts user-
definable frame-level data into up to eight frame service buffers.

• Data queued up in 32-bitwide transfer buffer for maximum PCI burst rate of 1 Gbps.

• Interrupt-driven or polled service methods.

• Request-driven automatic status collection and buffering.

• Separate, isolated status and telemetry data busses.

• Digital power consumption (current draw) and ambient temperature monitoring.

• All board logic reprogrammable in-circuit.

• No onboard microprocessing unit (MPU), heat sinks, jumpers, or switches.

• PCI Joint Test Action Group (JTAG) boundary scan for in-system testing.

• Expandable via optional mezzanine board for additional/custom functionality.

RLP PCI Card Hardware Definition Document 521-H/W-065

xii

 P HYSICAL D ESCRIPTION

• Universal voltage (5 or 3.3 V), 32-bit, 33 MHz, full-height, full length PCI Expansion Card.

• One input/output (I/O) panel light-emitting diode (LED.)

• Four I/O panel sub-miniature "B" (SMB) jacks for differential or single-ended ECL serial
data and clock signal input.

• One I/O panel DB-9 jack for RS-422/RS-485 data and clock signal input and optional 10 MHz
transistor-transistor logic (TTL) timecode reference clock signal input.

• On-board timecode reference clock oscillator.

• Three National Aeronautics and Space Administration (NASA) Goddard Space Flight
Center (GSFC) Mission Operations and Data Systems Directorate (MO&DSD) Data Systems
Technology Division (DSTD) Microelectronic Systems Branch (MSB) (Code 521) custom
application-specific integrated circuits (ASICs):

- Parallel, Integrated Frame Synchronizer (PIFS).
- Reed-Solomon Error Detector/Corrector (RS).
- CCSDS Packet Telemetry/AOS Service Processor (SP).

• Commercial off-the-shelf (COTS) PCI Local Bus interface ASIC.

• Three large "complex" programmable logic devices (CPLD) in-circuit-reprogrammable
through onboard connector.

• One 200-pin connector for optional, variable-sized, custom-function mezzanine board and
test signal breakout.

RLP PCI Card Hardware Definition Document 521-H/W-065

1-1

SECTION 1
GENERAL INFORMATION

1.1 P URPOSE

This document describes the Return-Link Processor (RLP) Peripheral Components Interface
(PCI) Card part number G1527437, developed by the NASA GSFC Code 521 Next Generation Systems
(NGS) group.

1.2 S COPE

This document provides a functional description, memory map, register models, processing
scenario, and schematic description for the RLP. It is assumed that the reader is familiar with the
specification and operation of: PCI Local Bus, Systems and Expansion Cards; V3 Corporation
V962 PCI Bridge Chip (PBC) PCI Local Bus Bridge application specific integrated circuit (ASIC);
Consultative Committe for Space Data Systems (CCSDS) Packet Telemetry and Advanced
Orbiting System (AOS) Services; NASA Communications (Nascom) data signals; telemetry
return-link data processing functions including frame synchronization, Reed-Solomon error
detection/correction, and CCSDS Packet Telemetry and AOS Service Processing; and NASA
GSFC Code 521 ASICs including the Parallel, Integrated FS (PIFS), Reed-Solomon Error
Detector/Corrector (RS), and CCSDS Packet Telemetry and AOS Service Processor (SP).

1.3 G ENERAL D ESCRIPTION

The current generation of Code 521-developed telemetry return-link data processing systems
requires a number of Versa-Module Euroboard (VME) cards, custom ASICs, and embedded
microprocessing units (MPUs) to perform high-speed (>2 Mbps) real-time return-link data
processing. In particular, frame synchronization at 50 Mbps and below is performed by a VME
card containing a Code 521 complimentary metal-oxide-semiconductor (CMOS) Frame
Synchronizer (FS) ASIC and support circuitry; frame synchronization above 50 Mbps is performed
by a VME card containing a Code 521 Gallium-Arsenide (GaAs) FS ASIC and support circuitry;
Reed-Solomon error detection and correction at up to 528 Mbps are performed by a VME card
containing a Code 521 CMOS RS ASIC and support circuitry; and CCSDS Packet Telemetry and
AOS Service processing at up to 50 Mbps is performed by a VME card containing two Code 521
CMOS telemetry data pipeline ASICs, three Motorola 68040 MPUs, and support circuitry (see
Figure 1-1).

[to be added by Technical Publications]

Figure 1-1. Code 521 Current Generation Return-Link Data Processing System

Continuing the evolution of telemetry processing components towards smaller/cheaper/faster by
applying the current state-of-the-art in microelectronic technology, the Code 521 Next Generation
Systems (NGS) group recently parallelized and integrated the FS and SP functions into two CMOS
ASICs capable of up to 528 Mbps (matching the RS). The RLP is the next generation return-link
data processing solution, the combination of the three RLP functions into a single board-level
product. It is designed to operate from 0 to 300 Mbps and can theoretically be operated up to 400
Mbps. It is also the first application of the Code 521 SP ASIC, as well as the first application of the
Code 521 PIFS ASIC above 10 Mbps.

RLP PCI Card Hardware Definition Document 521-H/W-065

1-2

The RLP is a fully Plug and Play (P&P)-compliant PCI Expansion Card capable of operating in
all PCI host computers: International Business Machines (IBM)-compatibles, Macintosh-
compatibles, Digital Equipment Corporation (DEC) stations, Sun SPARCstations, etc. See Figure
1-2. Thus, the expense, complexity, and possible concerns about the aging VME platform are
eliminated.

U10
RS

U14
SP

U13
DMAI

U16
BBC

U18
SC

J7 OSM

MACHPRO

J6

P1 PCI

D1 LED
J1 IED+

J2 IED-

J3 IEC+

J4 IEC-

J5 ILF

U8
V962PBC

RLP

U5
PIFS

Figure 1-2. Code 521 Next Generation Return-Link Processor PCI Card

Serial telemetry return-link data is most commonly the output product of a bit-synchronizer,
either in local receiver hardware or at Nascom; it could also be generated by test hardware or
played back from storage. This enters the PIFS directly through the connectors on the I/O panel.
The host computer can inject bit-parallel, byte-serial data at relatively low rates directly into the
PIFS via the PCI bus, so telemetry data can also be generated by the host or obtained over a network.

The processed telemetry data accumulates in first-in, first-out (FIFO) memory buffers for driver
software running on the host computer to transfer out over the PCI bus, generally into main
memory, where it is further processed or transferred to another PCI card, into storage, or out across
a network. The RLP can also accept an optional mezzanine board which can conceivably be
developed to output data directly to a storage or network device.

Figure 1-3 shows how the RLP fits into the Next Generation Desktop Satellite Data Processor
(DSDP), the logical future of telemetry processing.

[to be added by Technical Publications]

Figure 1-3. Code 521 Next Generation Desktop Satellite Data Processor

The PIFS performs CCSDS as well as custom frame synchronization, cyclic redundancy code
(CRC)/bit transition density (BTD) decoding, CCSDS day-segmented timecode generation, and
frame annotation. Data from the PIFS can be output via the PCI bus, as would be done with
Weather data, or input to the RS, which would be the case for most CCSDS data. The RS performs
Reed-Solomon error detection and correction and frame quality annotation. Data from the RS
can also be output via the PCI bus or sent to the SP. The SP performs CCSDS Packet Telemetry and
AOS Service Processing, including frame service and packet quality annotation. It sorts frame

RLP PCI Card Hardware Definition Document 521-H/W-065

1-3

components and annotation into up to eight frame service buffers, and packet components and
annotation into up to four packet service buffers, for output via the PCI bus. The host also has access
to a status data buffer which can contain all of the processing status and data quality information
needed for real-time monitoring.

The RLP has a connector for an optional mezzanine board. The board can be designed to perform
additional manipulation of the output data such as buffering, sorting, processing, annotating,
testing, and output.

Support for the RLP on particular PCI platforms depends not on the hardware but driver software
development. Driver software is currently being developed for the Intel Pentium/Microsoft
Windows-NT and DEC Alpha/DEC Ultrix platforms.

Physically, the RLP is a universal voltage (5 or 3.3 V), 32-bit, 33 MHz, full-height, full length PCI
Expansion Card. Its I/O panel contains one host-operated LED, four sub-miniature "B" (SMB)
jacks for differential or single-ended emitter-coupled logic (ECL) serial data and clock signal
input, and one DB-9 jack for RS-422/RS-485 data and clock signal input and optional 10 MHz TTL
timecode reference clock signal input. The card contains an onboard timecode reference clock
signal oscillator, three Code 521 custom ASICs (PIFS, RS, SP), a COTS PCI/local bus bridge ASIC,
three large in-circuit-reprogrammable "complex" programmable logic devices (CPLD) and a
programming connector, and one 200-pin connector for an optional mezzanine board or test signal
breakout. See Figure 1-2.

1.4 R EFERENCE D OCUMENTS

• Packet Telemetry. CCSDS 102.0-B-3, CCSDS, Annapolis MD.

• Advanced Orbiting Systems, Networks, and Data Links: Architectural Specification.
CCSDS 701.0-B-2, CCSDS, Annapolis MD.

• Parallel Integrated Frame Synchronizer Chip. 521-ASIC-023, NASA GSFC, Greenbelt MD.

• Microelectronic Systems Branch Application-Specific Integrated Circuits (ASIC)
Components Document. 521-SPEC-002, NASA GSFC, Greenbelt MD.

• Service Processor Chip. 521-ASIC-???, NASA GSFC, Greenbelt MD.

• PCI Local Bus Specification Revision 2.1. PCI Special Interest Group, Portland OR.

• VxxxPBC User's Manual Revision 2.0. V3 Semiconductor Corp., Santa Clara CA.

• AT24C01A/2/4/8/16 2-Wire Serial CMOS E2PROM Data Sheet. ATMEL, San Jose CA.

• MACH466/MACH466LV466-10/12/15 High-Density EE CMOS Programmable Logic Data
Sheet. Advanced Micro Devices (AMD) Inc., Sunnyvale CA.

• MACHPRO(TM) Programming Software Manual for AMD MACH JTAG Devices Version
1.3x. Advanced Micro Devices Inc., Sunnyvale CA. (MACHPRO is a registered trademark
of Advanced Micro Devices, Inc.)

• IDT72261/72271 CMOS SuperSync FIFO Data Sheet. Integrated Device Technology, Santa
Clara CA.

RLP PCI Card Hardware Definition Document 521-H/W-065

2-1

SECTION 2
FUNCTIONAL DESCRIPTION

2.1 I NTRODUCTION

The RLP performs the satellite telemetry return-link data processing functions in real time up to a
nominal 300 Mbps with a theoretical maximum of 400 Mbps. Functions include frame
synchronization, Reed-Solomon error detection and correction, and CCSDS Packet Telemetry and
AOS Service Processing, all on a single industry-standard PCI Expansion Card. In a typical
scenario, a standard serial data stream is connected through the I/O panel, processed in dataflow-
fashion through the Code 521 custom ASICs, and deposited in a number of FIFO memory buffers for
software running on the PCI host computer to transfer elsewhere; see Figure 2-1. Weather Satellite
Data and other formats can be frame synchronized and routed around the SP and/or RS functions.
Internet and other low-rate computer-accessible data sources can be injected directly by the host
via the PCI bus. The RLP also contains a connector for an Optional Sorting Module, a variable-
sized mezzanine board on which additional processing, buffering, and output functions can be
implemented.

PCI
Bus

RS
Error

Detect /
Correct

PI
Frame
Sync

CCSDS
Service
Process

50 MHz 50 MHz 50 MHz

1-bit

8-bit

16-bit

32-bitFrame
Services

Packet
Services

Status

ECL
300 Mb/s

RS-422
15 Mb/s

PIFS Direct
RSEDC DirectWeather

Reject

user

Encaps

Path

Reject

Bitstream

user

VCA

VCDU

user

SLC

Insert

33 MHz

PCI
 Bus

Interface

Status
Collect

33 MHz

DMA
Interface

60 MHz

Optional
Sorting
Module

Baseboard
Control

Figure 2-1. Return-Link Processor PCI Card Functional Block Diagram

This section provides a functional description of the RLP.

RLP PCI Card Hardware Definition Document 521-H/W-065

2-2

2.2 T HEORY OF O PERATION

The RLP functions as a PCI slave device to the host computer (master). It is seen by application
software as an area of memory that can be written (setup, control, data input) and read (status, data
output); to see the memory map, refer to Table 3-1. The RLP has no onboard MPU, so software
running on the host is responsible for setup, control, monitoring, and transferring out the
processed data. The card can generate interrupts to the host to request service, or its status can be
polled; overall function is the same in either case.

Upon host initialization, the host operating system and driver software interact with the RLP as
specified by the PCI Specification to configure the device and the low-level host interface.
Eventually, application software sets up the card for a "data session". Setup information
ultimately comes from the user; the host sets up each of the RLP components (described in Section
5.3) by writing to the appropriate areas of memory. The system is ready to accept telemetry data as
soon as setup is complete.

Telemetry data commonly enters the card in the form of a serial bitstream through connectors on
the I/O panel. It can also be injected by the host via the PCI bus in bit-parallel, byte-serial form
(one byte per 32-bit word write); this could be used for Internet, test, or other very low rate data. The
data goes directly into the PIFS. Output from the PIFS goes either to the RS or to a data FIFO per host
setup. If set up to use the RS, its output goes either to the SP or to a data FIFO, per host setup. If set up
to use the SP, its output goes in up to 12 data FIFOs, per host setup. These three data flow options are
mutually exclusive and remain fixed within a data session.

During a data session, the host may want to obtain the status of not just the immediate data flow
operation, but of each processing element on the RLP, the quality of the data itself, or other
hardware conditions such as ambient temperature or total current draw (power consumption).
This is accomplished by writing a status request code into a status request register; the RLP then
collects all the various status information requested and places it into a dedicated data FIFO
without further host interaction and without interfering with the flow of telemetry data.

As data enters the thirteen data FIFOs (twelve SP and one Status), the fullness of each FIFOs is
recorded in a pair of baseboard condition registers, along with whether a Status Collection
Operation has completed and whether the FIFO receiving data from the PIFS has overflowed.
These registers can be polled by the host or they can be set up to cause an interrupt, at which point the
host reads them to determine the interrupt source.

Most of the conditions tell the host that at least some known quantity of data is ready to be
transferred out. The host typically transfers the data to host memory. To do this, the host first sets
up the byte transfer with the Direct Memory Access (DMA) Interface (DMAI), which is responsible
for moving data out of the 8-bit-wide data FIFOs and packing it into a 32-bit-wide transfer FIFO,
and then sets up the DMA in the PCI Bridge Chip (PBC), which is responsible for reading the data
from the transfer FIFO across the PCI bus to the specified destination. At this point any previously-
requested status data is handled in the same manner as the telemetry data, providing a uniform
data transfer interface throughout the data session. The host is responsible for prioritizing the
order in which the data FIFOs are serviced and the amount of data buffered before the need for
service is indicated. Other processes running on the host typically transfer the data from host
memory to storage or to another host across a network and might also perform additional data
processing.

At the end of a data session, some data will likely remain in the data FIFOs; flushing these is as
straightforward as a normal data transfer. If the SP was set up to process split packets, there may

RLP PCI Card Hardware Definition Document 521-H/W-065

2-3

also be unused pieces that must be manually extracted as described in the SP document listed in
Section 1.4.

After flushing, the RLP may be set up for a new session, or depending on how it was previously set
up, may be ready to begin another session immediately.

2.3 M ODES OF O PERATION

The RLP has only one mode of operation; this is what was described in Section 2.2. Other modes
may be added by the Optional Sorting Module such as the ability to act as the PCI bus master,
perform automated self-testing or control, or output telemetry data directly to an I/O device; refer to
the hardware definition document for the specific module of interest for more information.

2.4 F UNCTIONAL E LEMENTS

The functional elements of the RLP consist of: the PCI Interface, the Input Interface, the Parallel
Integrated Frame Synchronizer, the Reed-Solomon Error Detector/Corrector, the CCSDS Service
Processor, the Status Collector, the Baseboard Interface, and the DMA Interface.

2.4.1 PCI INTERFACE

The RLP conforms to the industry standard PCI Local Bus Specification Revision 2.1; see Section
1.4 for the complete reference. It is a full-height, full-length, 33 MHz, 32-bit data, universal-
voltage PCI expansion device. PCI is "Plug & Play" (P&P), so the RLP should function in any
PCI-compliant system for which driver software has been provided. During a data burst, the PCI
bus is capable of transferring one 32-bit word every 33 MHz clock cycle for a throughput of over 1
Gbps. It receives the 33 MHz PCI bus clock from the host computer.

The local bus is a 33 MHz, fully-synchronous, 32-bit demultiplexed address and data bus. It has
the signalling and timing characteristics necessary to interface directly with the Intel i960Cx/Hx
series of microprocessors, although the RLP itself uses no MPU. It requires the local bus clock to be
provided.

PCI provides JTAG Boundary Scan signals that are connected to the SP and PIFS ASICs to
facilitate automated testing.

Connectivity is provided by the V962PBC PCI Bus Bridge Chip from V3 Corporation; see Figure 2-2.
It provides dual, chainable DMA engines, and the RLP contains 128 Kbytes of 32-bit-wide local
memory to hold the chaining list. This is more than the chaining list requires, so the additional
memory may be used by the host as desired. The PBC has been wired to generate a PCI interrupt
from two sources, the Baseboard Interface and the Optional Sorting Module. However, the
Baseboard Interface can also generate the interrupt for the Optional Sorting Module, so the user
can decide which mode is preferable. The PBC has been wired to automatically load its
configuration-space from an onboard ROM. The ROM is in-circuit reprogrammable through the
PBC; more information is available from the reference documents listed in Section 1.4. If an
Optional Sorting Module is present, the onboard ROM is automatically replaced by one on the
Module. In this way, all Modules can use the same version of the RLP.

RLP PCI Card Hardware Definition Document 521-H/W-065

2-4

33 MHz
32-bit

PCI Bus

1-bit

8-bit

16-bit

32-bit

PCI
Bridge
Chip

DMA
Interface

Optional
Sorting
Module

Baseboard
Control

EPROM

DMA
Chaining
Memory
32k x 32

JTAG

33 MHz Local Bus

Status
Data

60 MHz

Telemetry
Data

Figure 2-2. RLP PCI Card & Optional Sorting Module Detail

2.4.2 INPUT INTERFACE

The I/O panel contains four standard SMB jacks for ECL differential or single ended data and
clock signals up to 300 Mbps nominal, 400 Mbps theoretical maximum with the 50 MHz processing
clock (the maximum allowed by the ECL circuit). It also contains one DB-9 jack for low-rate (≤10
Mbps) differential RS-422 or RS-485 data and clock signals, although past experience with the
circuits indicates that up to 25 Mbps is often possible. The ECL inputs are terminated to 50Ω into –
2V and the low-rate telemetry inputs are terminated to 120Ω . Signals may be connected to both ECL
and low-rate inputs simultaneously, but only one will be used for the data source as determined by
setup from the host; refer to Section 4 for details.

ECL data is parallelized into bytes by onboard circuitry for input to the PIFS. Low-rate data is slow
enough to enter the PIFS directly in serial form. A single-ended ECL clock signal requires
special accommodation; see Section 4.3.2 for details.

RLP PCI Card Hardware Definition Document 521-H/W-065

2-5

There is also an external input for a high-accuracy TTL-level 50Ω 10 MHz reference clock that the
PIFS can use for timecode generation in lieu of the onboard oscillator. Use of this input is selected
by setup from the host and if left connected while unused will have no adverse effect.

2.4.3 PARALLEL INTEGRATED FRAME SYNCHRONIZER

CCSDS and custom frame synchronization, non-return-to-zero (NRZ) decoding, CRC checking,
BTD decoding, CCSDS day-segmented timecode generation, Weather data correlation (up to 64
bits), associated frame annotation, and programmed telemetry data input is provided by the PIFS;
see Figure 2-1. It runs off the 50 MHz processing clock and is theoretically capable of operating up
to 66 MHz. It can input up to one byte per clock cycle and can output up to two bytes per clock cycle
through a 16-bit output port. It has thirty two 32-bit registers for control and status, and a JTAG
Boundary Scan port accessible through the PCI bus; more information is available from the
reference documents listed in Section 1.4.

2.4.4 REED-SOLOMON ERROR DETECTOR /CORRECTOR

Reed-Solomon error detection and correction and associated frame quality annotation is provided
by the RS. It can handle up to 8 interleaves of RS(255,223)-encoded data as well as the RS(10,6)-
encoded data sometimes used for CCSDS frame headers; see Figure 2-1. It runs off the 50 MHz
processing clock and is theoretically capable of operating up to 66 MHz. It can input and output one
or two bytes at up to one-half the processing clock frequency through 16-bit input and output ports. It
has forty 16-bit registers for control and status accessible on 32-bit boundaries; more information
is available from the reference documents listed in Section 1.4.

2.4.5 CCSDS SERVICE PROCESSOR

CCSDS Packet Telemetry, AOS Service Processing, and associated frame and packet annotation
is provided by the SP; see Figure 2-3. It runs off the 50 MHz processing clock and is theoretically
capable of operating up to 66 MHz. It can input one or two bytes at up to one-half the processing clock
frequency through a 16-bit input port and can output up to two bytes per clock cycle through two 8-bit
output ports: a frame service port and a packet service port. However, it can control the gating of up
to 8 FIFOs on the frame service port and up to 4 FIFOs on the packet service port, for an effective
maximum output of 12 bytes per clock cycle or 1800 Mbps. Typical encountered applications are
expected never to employ more than 3 services on a single telemetry data byte for an SP output data
rate of 450 Mbps; the RLP will not handle significantly more than that.

RLP PCI Card Hardware Definition Document 521-H/W-065

2-6

CCSDS
Service

Processor

50 MHz

Frame
Service

Data

Packet
Service

Data

PIFS Direct

RSEDC Direct

/ Weather

Reject

user

Encaps

Path

Reject

Bitstream

user

VCA

VCDU

user

SLC

Insert

1-bit

8-bit

16-bit

32-bit

Packet
Data
Buffer

512k x 32

RS EDC
Output FIFO

Packet
Lookup
Table

512k x 32

Packet
Status
Table

16k x 32

Frame
Status
Table

4k x 8

Frame
Lookup
Table

512k x 8

33 MHz Local Bus

32k x 8
Data
FIFOs

Figure 2-3. RLP Service Processor Detail

The SP is equipped with an external 512 Kbytes of memory for a frame lookup table, 2 Mbytes for a
packet lookup table, 2 Mbytes for a packet data buffer, 4 Kbytes for a frame status table, and 64
Kbytes for a packet status table. The two status table memories are dual-ported for interference-
free monitoring by the host. The 2 Mbytes of packet data buffer memory is not the maximum
supportable by the SP, but allows 128 virtual channels with a maximum packet length of 8 Kbytes,
down to 16 virtual channels with a maximum packet length of 64 Kbytes.

Each of the 12 services is provided a 32 Kbytes Data FIFO. A large FIFO is critical for buffering
data while the host is involved in overhead or other non-data-transfer operations, and 32 Kbytes is
the largest FIFO available in 1996.

RLP PCI Card Hardware Definition Document 521-H/W-065

2-7

The SP has one-hundred-and-twelve 16-bit registers for control and status accessible on 32-bit
boundaries, and has a JTAG Boundary Scan port accessible through the PCI bus; more
information is available from the reference documents listed in Section 1.4.

2.4.6 STATUS COLLECTOR

The Status Collector is responsible for collecting status from the other devices on the RLP and
depositing it in a Data FIFO; see Figure 2-4. It is a programmable logic device running off the 33
MHz local bus clock and has two 32-bit registers. The first is the Status Request register. Writing
to it first places a copy of the status request itself into the Status Data FIFO, followed by the contents
of the analog-to-digital converter (ADC) register (described in Section 3.3.7.2), followed by any
requested status. Requestable status consists of the 128-byte contents of the PIFS registers, the 80-
byte contents of the RS registers, the 224-byte contents of the SP registers, and host-specified
amounts of the SP Frame Status and Packet Status memories. When the last byte of status data has
been written into the Status Data FIFO, the Status Collector asserts a signal to the Baseboard
Interface (described in Section 2.4.8) that is accessible from a Baseboard Condition register and
can be specified by the host to cause an interrupt.

RS
Error

Detect /
Correct

PI
Frame
Sync

CCSDS
Service
Process

Status

1-bit

8-bit

16-bit

32-bit
PCI
 Bus

Interface

Status
Collector

DMA
Interface

Baseboard
Control

33 MHz Local Bus

Temp.
Sense

Current
Sense

A/D
Converter

Figure 2-4. RLP Status Collector & Baseboard Interface Detail

The second Status Collector register is the ADC register. As well as being host-accessible, it is also
automatically collected as part of a status request. It contains two coded values generated by the
ADC: one for the total current draw on the 5V supply by the RLP, and one for the ambient
temperature; see Table 3-13 for the conversion values. The ADC has eight analog inputs and
constantly scans them, depositing the converted values into an internal dual-ported memory. The
ADC memory is too slow to access directly from the local bus, so the Status Collector constantly
scans it and places the ADC values into its own register. The ADC and Status Collector are
directly connected and the scanning operation does not interfere with any other board operation.

RLP PCI Card Hardware Definition Document 521-H/W-065

2-8

The Status Collector also provides the ability for the host to write directly into the Status Data FIFO
for flag programming and testing purposes.

The Status Collector and all points of collection operate on a segment of the local bus isolated by a
switching circuit from the one over which the telemetry data flows. The switch is only closed when
a host access falls within the appropriate memory region; the Baseboard Interface is responsible
for arbitrating with the Status Collector for the "status bus segment" and operating the switch. The
Baseboard Interface decodes the address space belonging to the different bus segments, while the
Status Collector decodes the individual addresses for accessing everything on the status bus
segment. Bus arbitration is discussed in detail in Section 2.4.8.

The Status Collector is in-circuit reprogrammable through a special programming / JTAG
Boundary Scan port accessible through an onboard MACHPRO connector; more information is
available from the reference documents listed in Section 1.4.

2.4.7 DMA INTERFACE

The DMA Interface is responsible for transferring telemetry data from the 8-bit-wide Data FIFOs
to the 32k x 32-bit (128 Kbytes) Transfer FIFO and also controlling the DMA itself for efficient
transfer across the PCI bus; see Figure 2-2. It is a programmable logic device running off both the
50 MHz processing clock and the 60 MHz byte-transfer clock. It can transfer data at up to 480 Mbps,
more than three times a nominal 150 Mbps input data rate, and it can therefore accommodate the
expected maximum SP data multiplication at this rate of three.

The DMA Interface has five 32-bit registers. The first is the DMAI Request register for channel A.
The host writes the code for the desired source Data FIFO and the number of bytes to transfer. As
soon as a request is written, the DMA Interface commences the flow of data at a rate of one byte per
60 MHz clock cycle. Should the Transfer FIFO become full, the DMA Interface will wait
indefinitely for room to appear. If the source Data FIFO becomes empty, the DMA Interface fills
the remainder of the byte transfer request with filler bytes (copies of the last valid data byte) and
counts the number of filler bytes in the Fill Count register for channel A, the second register. The
third and fourth registers are the DMAI Request and Fill Count registers for channel B; two
identical byte transfer channels are provided to better accommodate the two DMA engines of the
PBC and allow a modicum of pipelining. The channels are used in the order written; either
channel may also be used exclusively. The fifth register is the DMAI Control register. It allows
the host to specify the order in which bytes are packed into 32-bit words and to reset the Transfer
FIFO without affecting the programmable flag settings.

The DMA Interface accommodates the emptying of the Transfer FIFO at one 32-bit word per local
bus clock cycle, the same as the maximum bandwidth of the PCI bus. As part of the RLP setup, the
host sets the programmable almost-empty flag of the Transfer FIFO to a value that allows
reasonably large PCI bursts while not starving the Data FIFOs that are not being serviced at any
particular moment. While the amount of data in the Transfer FIFO is below this specified
threshold and the byte transfer from the source Data FIFO is unfulfilled, any accesses from the
PBC as part of a DMA are held off, thus providing a maximally dense PCI burst. Should the DMA
operation empty the Transfer FIFO before the byte transfer from the source Data FIFO is fulfilled,
the DMA will once again be held off, and this bursting cycle will repeat until the byte transfer
request is finally fulfilled.

At the end of a data session, any data remaining in the Data FIFOs is most efficiently flushed by
transferring a block of data equal to the size of the Data FIFO and observing the Fill Count
register(s) afterwards to determine how much real data existed at the beginning of the transaction.

RLP PCI Card Hardware Definition Document 521-H/W-065

2-9

The DMA Interface also provides the ability for the host to read the Data FIFOs directly and write
the Transfer FIFO directly for flag programming and testing purposes.

The DMA Interface is in-circuit reprogrammable through a special programming / JTAG
Boundary Scan port accessible through an onboard MACHPRO connector; see the documents;
more information is available from the reference documents listed in Section 1.4.

2.4.8 BASEBOARD INTERFACE

The Baseboard Interface is responsible for a number of functions, the most complex of which is
controlling and generating the interrupt from some 54 possible sources; see Figure 2-4. It also
provides miscellaneous board control functions, decodes the major address spaces and the DMA-
Chaining Memory space, and arbitrates with the Status Collector for the status bus segment. It is a
programmable logic device running off the 33 MHz local bus clock and has five 32-bit registers.
The first is the Baseboard Control register, which allows the host to toggle the LED, select single-
ended or differential ECL data input, select onboard or off-board PIFS timecode reference clock,
select SP/FS-Direct/RS-Direct telemetry data routing, put all programmable FIFOs in flag-
programming mode, select whether the Interrupt Condition registers should indicate the raw or the
masked form of the interrupt sources, reset 16 separate groups of devices, and disable the interrupt
feature. The second and third registers are the Interrupt Source Mask registers, and the fourth and
fifth are the Interrupt Source Condition registers. 54 possible interrupting signals are distributed
among the two registers in each pair: as many FIFO flag signals as permitted by available pins
on the device; the foremost FIFO overflow condition, which is detected, latched, and made
clearable; the Status Collection Fulfilled signal; and the Optional Sorting Module interrupt
signal. The latter also goes directly to the PBC, so either (or both) may be disabled (masked) if
desired.

To perform the function of arbitrating for the status bus segment when the Baseboard Interface
detects an address to status bus space, it asserts a Status Bus Request signal that goes directly into
the Status Collector. When the Status Collector is ready to give up its bus, if necessary pausing a
Status Collection Operation, it asserts a Status Bus Grant signal that goes directly back to the
Baseboard Interface. The Baseboard Interface then closes the bus switch, connecting the two
segments of the local bus together, and the status bus space access proceeds with the Status Collector
decoding the specific address. The Status Collector continues granting the status bus long enough
so that an immediately subsequent status bus space access avoids rearbitration. Eventually after
the Baseboard Interface deasserts the Status Bus Request signal and the immediately subsequent
access does not require the status bus, the Status Collector deasserts the Status Bus Grant signal
and, if necessary, continues a Status Collection Operation.

The Baseboard Interface is in-circuit reprogrammable through a special programming / JTAG
Boundary Scan port accessible through an onboard MACHPRO connector; more information is
available from the reference documents listed in Section 1.4.

2.5 I NTERRUPTS

A single PCI device such as the RLP is allowed by the PCI Specification to generate only a single
interrupt. The source of the interrupt will be one or more of the 54 conditions indicated in the
Baseboard Condition registers shown in Section 3.3.2. If an Optional Sorting Module is present,
the PBC may be set up to generate the interrupt directly from it; more information is available
from the reference documents listed in Section 1.4.

RLP PCI Card Hardware Definition Document 521-H/W-065

3-1

SECTION 3
MEMORY MAP AND REGISTER DEFINITIONS

3.1 I NTRODUCTION

The RLP essentially consists of four ASICs, three CPLDs, and a number of memories which
together require a total of 14 address spaces. These are arranged within a single 2 Mbytes of PCI
address space. If an Optional Sorting Module is present, its address space begins immediately
following the 2 Mbytes baseboard space, and the amount is defined by the Module as indicated in its
hardware definition document. Only 32-bit accesses on 32-bit boundaries are supported.

This section provides the memory map and register definitions for the RLP.

3.2 M EMORY M AP

Table 3-1 lists the overall address map of the RLP.

Table 3-1. RLP Memory Map

Address (Hex) Device/Function
00 0000 - 01 FFFF DMA-Chaining/User Memory

02 0000 - 03 FFFF unused (aliased DMA-Chaining/User Memory)

04 0000 - 04 0013 Baseboard Interface Registers

04 0014 - 04 001F unused (returns 0)

04 0020 - 07 FFFF unused (aliased Baseboard Interface Registers)

08 0000 - 09 FFFF DMA Interface Transfer FIFO Output Space

0A 0000 - 0A 0013 DMA Interface Registers

0A 0014 - 0A 001F unused (returns 0)

0A 0020 - 0B FFFF unused (aliased DMA Interface Registers)

0C 0000 - 0D FFFF Data FIFO Output Space

0E 0000 - 0F FFFF DMA Interface Transfer FIFO Input Space

10 0000 - 10 000B Status Collector Registers

10 000C - 10 001F unused (returns 0)

10 0020 - 10 7FFF unused (aliased Status Collector Registers)

10 8000 - 10 FFFF Status FIFO Input Space

11 0000 - 11 007F PIFS Registers

11 0080 - 11 FFFF unused (aliased PIFS Registers)

12 0000 - 12 009F RS Registers

12 00A0 - 12 00FF unused (returns 0)

12 0100 - 12 FFFF unused (aliased RS Registers)

13 0000 - 13 FFFF RS Internal Data Memory

14 0000 - 14 01BF SP Registers

14 01C0 - 14 01FF unused (returns 0)

14 0200 - 14 FFFF unused (aliased SP Registers)

15 0000 - 15 3FFF SP Frame Status Memory

15 4000 - 15 FFFF unused (aliased SP Frame Status Memory)

16 0000 - 16 FFFF SP Packet Status Memory

17 0000 - 17 FFFF unused (aliased SP Packet Status Memory)

18 0000 - 1B FFFF SP Internal & External Memories

1C 0000 - 1F FFFF unused

20 0000 - ... OSM (if present)

RLP PCI Card Hardware Definition Document 521-H/W-065

3-2

3.3 M EMORY M AP D ESCRIPTION AND R EGISTER D EFINITIONS

3.3.1 DMA-CHAINING/USER MEMORY $00 0000

The PBC has a DMA chaining feature which requires a small amount of random-access memory
(RAM) to reside on the local bus; more information is available from the reference documents
listed in Section 1.4. 128 Kbytes of 32-bit-wide fast static RAM (SRAM) has been provided to support
this feature. It resides at address $00 0000 through $01 FFFF. This is more than DMA chaining
requires; any surplus is available to the host for general use.

3.3.2 BASEBOARD INTERFACE REGISTERS $04 0000

The Baseboard Interface contains five contiguous 32-bit-wide registers beginning at address $04
0000 for setup, control, and monitoring RLP functions that do not belong to any of the other RLP
subsystems. Accessing these registers during a DMA operation will severely degrade
performance and is strongly discouraged; this is the only such limitation.

3.3.2.1 Control Register $04 0000

The Baseboard Interface Control register resides at address $04 0000 and is both readable and
writeable, and contains 24 bits for controlling all of the RLP baseboard functions except the
interrupt sources. See Table 3-2.

Table 3-2. Baseboard Interface Control Register $04 0000

Bit(s) Function Default
<31-25> unused 0

<24> Interrupt Source Indication Mode (0=Raw, 1=Masked Shown Deasserted) 0

<23> unused 0

<22> Reset OSM (0=Reset, 1=Normal) 0

<21> Reset DMA Interface Transfer FIFOs (Master) (0=Reset, 1=Normal) 0

<20> Reset DMA Interface (0=Reset, 1=Normal) 0

<19> Reset Status Collector Data FIFO (Partial) (0=Reset, 1=Normal) 0

<18> Reset Status Collector Data FIFO (Master) (0=Reset, 1=Normal) 0

<17> Reset Status Collector (0=Reset, 1=Normal) 0

<16> Reset SP Packet Service Data FIFOs (Partial) (0=Reset, 1=Normal) 0

<15> Reset SP Packet Service Data FIFOs (Master) (0=Reset, 1=Normal) 0

<14> Reset SP Frame Service Data FIFOs (Partial) (0=Reset, 1=Normal) 0

<13> Reset SP Frame Service Data FIFOs (Master) (0=Reset, 1=Normal) 0

<12> Reset SP (0=Reset, 1=Normal) 0

<11> Reset RS-to-SP FIFO (0=Reset, 1=Normal) 0

<10> Reset RS (0=Reset, 1=Normal) 0

<09> Reset PIFS-to-RS FIFO (0=Reset, 1=Normal) 0

<08> Reset PIFS (0=Reset, 1=Normal) 0

<07> Reset ECL Serial-to-Parallel Converter (1=Reset, 0=Normal) 1

<06> Universal FIFO Programmable Flag Load (0=Load, 1=Normal) 0

<05> PIFS Timecode Reference Clock Select (0=Internal, 1=External) 0

<04-03> Processing Mode (00=SP, 01=FS-Direct, 10=SP, 11=RS-Direct) 0

<02> ECL Data Input Type Select (0=Single-Ended, 1=Differential) 1

<01> LED Control (0=On, 1=Off) 0

<00> Clear Foremost FIFO Overflow Condition (1=Clear, 0=Normal) 1

RLP PCI Card Hardware Definition Document 521-H/W-065

3-3

3.3.2.2 Interrupt Source Mask Register A $04 0004

The Baseboard Interface Interrupt Source Mask register A resides at address $04 0004 and is both
readable and writeable. It contains 30 bits for controlling the masking of one half of the RLP
baseboard interrupt source signals and one bit for disabling the entire interrupt. See Table 3-3.

Table 3-3. Baseboard Interface Interrupt Source Mask Register A $04 0004

Bit(s) Function Default
<31> Enable Baseboard Interrupt (1=Enable, 0=Disable) 0

<30> Mask Foremost FIFO Overflow Condition (0=Mask, 1=Use) 0

<29> Mask SP Status Data FIFO Almost-Empty Flag (0=Mask, 1=Use) 0

<28> Mask SP Frame Reject FIFO Almost-Empty Flag (0=Mask, 1=Use) 0

<27> Mask SP Bitstream Service FIFO Almost-Empty Flag (0=Mask, 1=Use) 0

<26> Mask SP Frame Service 3 / FS-Direct / RS-Direct FIFO Almost-Empty
Flag (0=Mask, 1=Use)

0

<25> Mask SP Frame Service 2 FIFO Almost-Empty Flag (0=Mask, 1=Use) 0

<24> Mask SP Frame Service 1 FIFO Almost-Empty Flag (0=Mask, 1=Use) 0

<23> Mask SP Static Service 3 FIFO Almost-Empty Flag (0=Mask, 1=Use) 0

<22> Mask SP Static Service 2 FIFO Almost-Empty Flag (0=Mask, 1=Use) 0

<21> Mask SP Static Service 1 FIFO Almost-Empty Flag (0=Mask, 1=Use) 0

<20> Mask SP Packet Reject FIFO Almost-Empty Flag (0=Mask, 1=Use) 0

<19> Mask SP Packet Service 3 FIFO Almost-Empty Flag (0=Mask, 1=Use) 0

<18> Mask SP Packet Service 2 FIFO Almost-Empty Flag (0=Mask, 1=Use) 0

<17> Mask SP Packet Service 1 FIFO Almost-Empty Flag (0=Mask, 1=Use) 0

<16> Mask SP Status FIFO Almost-Full Flag (0=Mask, 1=Use) 0

<15> Mask SP Frame Reject FIFO Almost-Full Flag (0=Mask, 1=Use) 0

<14> Mask SP Bitstream Service FIFO Almost-Full Flag (0=Mask, 1=Use) 0

<13> Mask SP Frame Service 3 / FS-Direct / RS-Direct FIFO Almost-Full
Flag (0=Mask, 1=Use)

0

<12> Mask SP Frame Service 2 FIFO Almost-Full Flag (0=Mask, 1=Use) 0

<11> Mask SP Frame Service 1 FIFO Almost-Full Flag (0=Mask, 1=Use) 0

<10> Mask SP Static Service 3 FIFO Almost-Full Flag (0=Mask, 1=Use) 0

<09> Mask SP Static Service 2 FIFO Almost-Full Flag (0=Mask, 1=Use) 0

<08> Mask SP Static Service 1 FIFO Almost-Full Flag (0=Mask, 1=Use) 0

<07> Mask SP Packet Reject FIFO Almost-Full Flag (0=Mask, 1=Use) 0

<06> Mask SP Packet Service 3 FIFO Almost-Full Flag (0=Mask, 1=Use) 0

<05> Mask SP Packet Service 2 FIFO Almost-Full Flag (0=Mask, 1=Use) 0

<04> Mask SP Packet Service 1 FIFO Almost-Full Flag (0=Mask, 1=Use) 0

<03> Mask DMAI FIFO Full Flag (0=Mask, 1=Use) 0

<02> Mask RS-to-SP FIFO Full Flag (0=Mask, 1=Use) 0

<01> Mask PIFS-to-RS FIFO Full Flag (0=Mask, 1=Use) 0

<00> Mask OSM Interrupt Signal (0=Mask, 1=Use) 0

3.3.2.3 Interrupt Source Mask Register B $04 0008

The Baseboard Interface Interrupt Source Mask register B resides at address $04 0008 and is both
readable and writeable. It contains 23 bits for controlling the masking of the other half of the RLP
baseboard interrupt source signals. See Table 3-4.

Table 3-4. Baseboard Interface Interrupt Source Mask Register B $04 0008

Bit(s) Function Default

RLP PCI Card Hardware Definition Document 521-H/W-065

3-4

<31-23> unused 0

<22> Mask Status Collection Done Signal (0=Mask, 1=Use) 0

<21> Mask SP Status FIFO Empty Flag (0=Mask, 1=Use) 0

<20> Mask SP Frame Reject FIFO Empty Flag (0=Mask, 1=Use) 0

<19> Mask SP Bitstream Service FIFO Empty Flag (0=Mask, 1=Use) 0

<18> Mask SP Frame Service 3 / FS-Direct / RS-Direct FIFO Empty Flag
(0=Mask, 1=Use)

0

<17> Mask SP Frame Service 2 FIFO Empty Flag (0=Mask, 1=Use) 0

<16> Mask SP Frame Service 1 FIFO Empty Flag (0=Mask, 1=Use) 0

<15> Mask SP Static Service 3 FIFO Empty Flag (0=Mask, 1=Use) 0

<14> Mask SP Static Service 2 FIFO Empty Flag (0=Mask, 1=Use) 0

<13> Mask SP Static Service 1 FIFO Empty Flag (0=Mask, 1=Use) 0

<12> Mask SP Packet Reject FIFO Empty Flag (0=Mask, 1=Use) 0

<11> Mask SP Packet Service 3 FIFO Empty Flag (0=Mask, 1=Use) 0

<10> Mask SP Packet Service 2 FIFO Empty Flag (0=Mask, 1=Use) 0

<09> Mask SP Packet Service 1 FIFO Empty Flag (0=Mask, 1=Use) 0

<08> Mask DMAI FIFO Empty Flag (0=Mask, 1=Use) 0

<07> Mask RS-to-SP FIFO Empty Flag (0=Mask, 1=Use) 0

<06> Mask PIFS-to-RS FIFO Empty Flag (0=Mask, 1=Use) 0

<05> Mask DMAI FIFO Half-Full Flag (0=Mask, 1=Use) 0

<04> Mask RS-to-SP FIFO Half-Full Flag (0=Mask, 1=Use) 0

<03> Mask PIFS-to-RS FIFO Half-Full Flag (0=Mask, 1=Use) 0

<02> Mask DMAI FIFO Almost-Full Flag (0=Mask, 1=Use) 0

<01> Mask RS-to-SP FIFO Almost-Full Flag (0=Mask, 1=Use) 0

<00> Mask PIFS-to-RS FIFO Almost-Full Flag (0=Mask, 1=Use) 0

3.3.2.4 Interrupt Source Register A $04 000C

The Baseboard Interface Interrupt Source register A resides at address $04 000C and is only
readable; writes have no effect. It contains 31 bits indicating either the raw or masked states of one
half of the RLP baseboard interrupt source signals, depending on how bit 24 of the Baseboard
Interface Control register $04 0000 is set. See Table 3-5.

Table 3-5. Baseboard Interface Interrupt Source Register A $04 000C

Bit(s) Function
<31> 0 (unused)

<30> Overflow Condition (1=Overflow Int)

<29> SP Status FIFO Almost-Empty (1=Not Almost-Empty Int)

<28> SP Frame Reject FIFO Almost-Empty (1=Not Almost-Empty Int)

<27> SP Bitstream Service FIFO Almost-Empty (1=Not Almost-Empty Int)

<26> SP Frame Service 3 / FS-Direct / RS-Direct FIFO Almost-Empty (1=Not Almost-
Empty Int)

<25> SP Frame Service 2 FIFO Almost-Empty (1=Not Almost-Empty Int)

<24> SP Frame Service 1 FIFO Almost-Empty (1=Not Almost-Empty Int)

<23> SP Static Service 3 FIFO Almost-Empty (1=Not Almost-Empty Int)

<22> SP Static Service 2 FIFO Almost-Empty (1=Not Almost-Empty Int)

<21> SP Static Service 1 FIFO Almost-Empty (1=Not Almost-Empty Int)

<20> SP Packet Reject FIFO Almost-Empty (1=Not Almost-Empty Int)

<19> SP Packet Service 3 FIFO Almost-Empty (1=Not Almost-Empty Int)

<18> SP Packet Service 2 FIFO Almost-Empty (1=Not Almost-Empty Int)

<17> SP Packet Service 1 FIFO Almost-Empty (1=Not Almost-Empty Int)

<16> SP Status FIFO Almost-Full (0=Almost-Full Int)

RLP PCI Card Hardware Definition Document 521-H/W-065

3-5

<15> SP Frame Reject FIFO Almost-Full (0=Almost-Full Int)

<14> SP Bitstream Service FIFO Almost-Full (0=Almost-Full Int)

<13> SP Frame Service 3 / FS-Direct / RS-Direct FIFO Almost-Full (0=Almost-Full
Int)

<12> SP Frame Service 2 FIFO Almost-Full (0=Almost-Full Int)

<11> SP Frame Service 1 FIFO Almost-Full (0=Almost-Full Int)

<10> SP Static Service 3 FIFO Almost-Full (0=Almost-Full Int)

<09> SP Static Service 2 FIFO Almost-Full (0=Almost-Full Int)

<08> SP Static Service 1 FIFO Almost-Full (0=Almost-Full Int)

<07> SP Packet Reject FIFO Almost-Full (0=Almost-Full Int)

<06> SP Packet Service 3 FIFO Almost-Full (0=Almost-Full Int)

<05> SP Packet Service 2 FIFO Almost-Full (0=Almost-Full Int)

<04> SP Packet Service 1 FIFO Almost-Full (0=Almost-Full Int)

<03> DMAI FIFO Full (0=Full Int)

<02> RS-to-SP FIFO Full (0=Full Int)

<01> PIFS-to-RS FIFO Full (0=Full Int)

<00> OSM Interrupt Signal (0=OSM Int)

3.3.2.5 Interrupt Source Register B $04 0010

The Baseboard Interface Interrupt Source register B resides at address $04 0010 and is only
readable; writes have no effect. It contains 23 bits indicating either the raw or masked states of the
other half of the RLP baseboard interrupt source signals, depending on how bit 24 of the Baseboard
Interface Control register $04 0000 is set, and one bit indicating the presence of an Optional Sorting
Module which does not cause an interrupt and is not maskable. See Table 3-6.

Table 3-6. Baseboard Interface Interrupt Source Register B $04 0010

Bit(s) Function
<31-24> 0 (unused)

<23> OSM Present (1=Present, 0=Absent)

<22> Staus Collection Done Signal (1=Done Int)

<21> SP Status FIFO Empty (1=Not Empty Int)

<20> SP Frame Reject FIFO Empty (1=Not Empty Int)

<19> SP Bitstream Service FIFO Empty (1=Not Empty Int)

<18> SP Frame Service 3 / FS-Direct / RS-Direct FIFO Empty (1=Not Empty Int)

<17> SP Frame Service 2 FIFO Empty (1=Not Empty Int)

<16> SP Frame Service 1 FIFO Empty (1=Not Empty Int)

<15> SP Static Service 3 FIFO Empty (1=Not Empty Int)

<14> SP Static Service 2 FIFO Empty (1=Not Empty Int)

<13> SP Static Service 1 FIFO Empty (1=Not Empty Int)

<12> SP Packet Reject FIFO Empty (1=Not Empty Int)

<11> SP Packet Service 3 FIFO Empty (1=Not Empty Int)

<10> SP Packet Service 2 FIFO Empty (1=Not Empty Int)

<09> SP Packet Service 1 FIFO Empty (1=Not Empty Int)

<08> DMAI FIFO Empty (1=Not Empty Int)

<07> RS-to-SP FIFO Empty (1=Not Empty Int)

<06> PIFS-to-RS FIFO Empty (1=Not Empty Int)

<05> DMAI FIFO Half-Full (0=Half-Full Int)

<04> RS-to-SP FIFO Half-Full (0=Half-Full Int)

<03> PIFS-to-RS FIFO Half-Full (0=Half-Full Int)

<02> DMAI FIFO Almost-Full (0=Almost-Full Int)

<01> RS-to-SP FIFO Almost-Full (0=Almost-Full Int)

RLP PCI Card Hardware Definition Document 521-H/W-065

3-6

<00> PIFS-to-RS FIFO Almost-Full (0=Almost-Full Int)

3.3.3 DMA INTERFACE TRANSFER FIFO OUTPUT SPACE $08 0000

The DMA Interface Transfer FIFO holds up to 128 Kbytes of telemetry data, annotation data, and
board subsystem status data from the 8-bit-wide Data FIFOs packed into 32-bit words for eventual
transfer across the PCI bus. The 32-bit-wide FIFO output is aliased over 128 Kbytes of address
space from $08 0000 through $09 FFFF so that sequential reads from sequential addresses perform
sequential reads from the FIFO output up to the 128 Kbytes depth of the FIFO. The Transfer FIFO
also has programmable almost-full and almost-empty flags which are used by the DMAI
Controller, and their corresponding offset registers can be read through this space. It is readable
only; writes have no effect.

3.3.4 DMA INTERFACE CONTROLLER $0A 0000

The DMAI Controller contains five contiguous 32-bit-wide registers beginning at address $0A 0000
for setting up and initiating up to two sequential Data Transfers from the 8-bit-wide Data FIFOs
into the 32-bit-wide DMAI Transfer FIFO. Accessing these registers during a DMA operation will
severely degrade performance and is strongly discouraged; some registers have further
limitations as noted.

3.3.4.1 Channel A Control Regi ster $0A 0000

The DMAI Channel A Control register resides at address $0A 0000 and is readable and writeable.
It contains 17 bits for specifying the number of data bytes to be transferred into the DMAI Transfer
FIFO, and four bits to select which of the 13 Data FIFOs (four SP Packet Services, eight SP Frame
Services, and one Status) to obtain the data from. The act of writing this register selects the source
Data FIFO and initiates a Data Transfer Operation. The source Data FIFO selection applies to
both the Data Transfer and to reads from the Data FIFO Output Space described in Section 3.3.5; if
only Data FIFO selection without Data Transfer is required, a Data Transfer Size of zero is
recommended. If this register is read during a Channel A Data Transfer Operation, the Data
Transfer Size field will indicate the number of bytes remaining to be transferred before
completion. Writing this register during a Channel A Data Transfer Operation will cause
unpredictable results and must not be allowed to occur. See Table 3-7.

RLP PCI Card Hardware Definition Document 521-H/W-065

3-7

Table 3-7. DMA Interface Channel A Control Register $0A 0000

Bit(s) Function Default
<31-21> unused 0

<20-17> Source Data FIFO Selection:
0000 = SP Packet Service 1 0001 = SP Packet Service 2
0010 = SP Packet Service 3 0011 = SP Packet Reject Service
0100 = SP Frame Service 1 0101 = SP Frame Service 2
0110 = SP Frame Service 3 or RS-Direct or FS-Direct
0111 = SP Static Service 1 1000 = SP Static Service 2
1001 = SP Static Service 3 1010 = SP Bitstream Service
1011 = SP Frame Reject Service 1100 = Status
1101, 1110, 1111 = no FIFO selected

0

<16-00> Channel A Data Transfer Size (Remaining), in Bytes 0

3.3.4.2 Channel B Control Register $0A 0004

The DMAI Channel B Control register resides at address $0A 0004 and is readable and writeable.
It contains 17 bits for specifying the number of data bytes to be transferred into the DMA Interface
Transfer FIFO, and four bits to select which of the 13 Data FIFOs to obtain the data from. The act of
writing this register selects the source Data FIFO and initiates a Data Transfer Operation. The
source Data FIFO selection applies to both the Data Transfer and to reads from the Data FIFO
Output Space described in Section 3.3.5; if only Data FIFO selection without Data Transfer is
required, a Data Transfer Size of zero is recommended. If this register is read during a Channel
B Data Transfer Operation, the Data Transfer Size field will indicate the number of bytes
remaining to be transferred before completion. Writing this register during a Channel B Data
Transfer Operation will cause unpredictable results and must not be allowed to occur. See Table 3-
8.

Table 3-8. DMA Interface Channel B Control Register $0A 0004

Bit(s) Function Default
<31-21> unused 0

<20-17> Source Data FIFO Selection:
0000 = SP Packet Service 1 0001 = SP Packet Service 2
0010 = SP Packet Service 3 0011 = SP Packet Reject Service
0100 = SP Frame Service 1 0101 = SP Frame Service 2
0110 = SP Frame Service 3 or RS-Direct or FS-Direct
0111 = SP Static Service 1 1000 = SP Static Service 2
1001 = SP Static Service 3 1010 = SP Bitstream Service
1011 = SP Frame Reject Service 1100 = Status
1101, 1110, 1111 = no FIFO selected

0

<16-00> Channel B Data Transfer Size (Remaining), in Bytes 0

3.3.4.3 Channel A Fill Count Register $0A 0008

The DMAI Channel A Fill Count register resides at address $0A 0008 and is readable only; writes
have no effect. It contains 17 bits that indicate the number of filler bytes (copies of the last valid
data byte) that have been appended to the most recent Channel A Data Transfer. Filling will occur
when the specified Data FIFO contains less data than specified for the Transfer Size. During a
data session, this situation is easily avoidable and should not be encountered, but when a data
session is concluded it can be used to indicate the amount of data that remained in a Data FIFO if it
was flushed using a maximum-sized Data Transfer. See Table 3-9.

RLP PCI Card Hardware Definition Document 521-H/W-065

3-8

Table 3-9. DMA Interface Channel A Fill Count Register $0A 0008

Bit(s) Function
<31-17> 0 (unused)

<16-00> Count of Fill Bytes in Most Recent Channel A Data Transfer

3.3.4.4 Channel B Fill Count Register $0A 000C

The DMAI Channel B Fill Count register resides at address $0A 000C and is readable only; writes
have no effect. It contains 17 bits that indicate the number of filler bytes (copies of the last valid
data byte) that have been appended to the most recent Channel B Data Transfer. Filling will occur
when the specified Data FIFO contains less data than specified for the Transfer Size. During a
data session, this situation is easily avoidable and should not be encountered, but when a data
session is concluded it can be used to indicate the amount of data that remained in a Data FIFO if it
was flushed using a maximum-sized Data Transfer. See Table 3-10.

Table 3-10. DMA Interface Channel B Fill Count Register $0A 000C

Bit(s) Function
<31-17> 0 (unused)
<16-00> Count of Fill Bytes in Most Recent Channel B Data Transfer

3.3.4.5 General Control Register $0A 0010

The DMAI General Control register resides at address $0A 0010 and is readable and writeable. It
contains two bits. One bit performs a partial reset of the DMAI Transfer FIFO whereby the data
pointers are reset but the programmable-flag values are maintained. The other bit selects the Data
Byte Ordering Mode whereby the chronologically-sequential data bytes are packed into 32-bit
words ordered first byte to either bits 31-24 or 7-0, second byte to bits 23-16 or 15-8, third byte to bits 15-
8 or 23-16, and fourth byte to bits 0-7 or 31-24. Writing this register during a Data Transfer
Operation will cause unpredictable results and must not be allowed to occur. See Table 3-11.

Table 3-11. DMA Interface General Control Register $0A 0010

Bit(s) Function Default
<31-02> unused 0

<01> Partial Reset of DMA Interface Transfer FIFO (0=Reset, 1=Normal) 1

<00> Data Byte Order Mode:
0 = first byte to D<31-24> 1 = first byte to D<07-00>

0

3.3.5 DMA INTERFACE DATA FIFO OUTPUT SPACE $0C 0000

Each 8-bit-wide Data FIFO holds up to 32 Kbytes of telemetry data, annotation data, or board
subsystem status data from the Status Collector, SP, RS, or PIFS for eventual transfer into the 32-
bit-wide DMAI Transfer FIFO. For testing purposes, the 8-bit-wide outputs (actually 9 bits
including end-of-data marker) of these Data FIFOs can be read directly through the DMAI Data
FIFO Output Space. One Data FIFO output is connected to bits 8-0 of the 32-bit access bus and
aliased over 128 Kbytes of address space from $0C 0000 through $0D FFFF so that sequential reads
from sequential addresses perform sequential reads from the FIFO up to its 32k depth. The Data
FIFOs also have programmable almost-full and almost-empty flags which are used by the
Baseboard Interface, Status Collector, and SP, and their corresponding offset registers can be read

RLP PCI Card Hardware Definition Document 521-H/W-065

3-9

through this space. The specific source Data FIFO must be selected beforehand using either the
DMAI Channel A or B Control registers $0A 0000 or $0A 0004. If no Data Transfer Operation is
desired, using a Data Transfer Size of zero is recommended. If no Data FIFO has been selected,
either explicitly or implicitly by the last Data Transfer Operation, reads from the Data FIFO
Output Space will return unpredictable values but will have no other effect. The space is readable
only; writes will have no effect.

3.3.6 DMA INTERFACE TRANSFER FIFO INPUT SPACE $0E 0000

The DMAI Transfer FIFO holds up to 128 Kbytes of telemetry data, annotation data, and board
subsystem status data from the 8-bit-wide Data FIFOs packed into 32-bit words for eventual
transfer across the PCI bus. For testing purposes, the 32-bit-wide FIFO input is aliased over 128
Kbytes of address space from $0E 0000 through $0F FFFF so that sequential writes to sequential
addresses perform sequential writes to the FIFO input up to the 128 Kbytes depth of the FIFO. The
32-bit-wide FIFO is composed of four 8-bit-wide FIFOs in parallel, and for each 32-bit write to the
space, the least-significant 8-bits are written to all four FIFOs simultaneously. The Transfer
FIFO also has programmable almost-full and almost-empty flags which are used by the DMAI
Controller, and their corresponding offset registers can be written through this space. It is
writeable only; reads will have no effect but will return unpredictable values.

3.3.7 STATUS COLLECTOR $10 0000

The Status Collector contains two contiguous 32-bit-wide registers beginning at address $10 0000
for manipulating status information and testing. Accessing these registers during a DMA
operation will severely degrade performance and is strongly discouraged; some registers have
further limitations as noted.

3.3.7.1 Status Request Register $10 0000

The Status Collector Status Request register resides at address $10 0000 and is readable and
writeable. It contains 27 bits for specifying the types and quantities of status data to collect and
deposit into the 8-bit-wide Status Data FIFO. The act of writing this register initiates a Status
Collection Operation. The total number of status data bytes that a given status request will deposit
in the Status Data FIFO equals the sum of the requested data plus 8, the size of the status data header
which consists of the contents of the Status Request register $10 0000 followed by the contents of the
Analog Values register $10 0004. The Status Collector does not put the "spacer" bytes used to align
8- or 16-bit data to 32-bit boundaries into the Status Data FIFO, so the structure of the status data
differs from that which is directly read and written. Writing this register during a Status
Collection Operation will cause unpredictable results and must not be allowed to occur. See Table
3-12.

Table 3-12. Status Collector Status Request Register $10 0000

Bit(s) Function Default
<31-27> unused 0

<26-13> Number of 4-Byte SP Packet Status Half-Records to Collect - 1 0

<12> 0 = No Effect 1 = Collect SP Packet Status Half-Records... 0

<11-04> Number of 16-Byte SP Frame Status Half-Records to Collect - 1 0

<03> 0 = No Effect 1 = Collect SP Frame Status Half-Records... 0

<02> 0 = No Effect 1 = Collect SP Registers (112 W, 224 B) 0

<01> 0 = No Effect 1 = Collect RS Registers (40 W, 80 B) 0

<00> 0 = No Effect 1 = Collect PIFS Registers (32 LW, 128 B) 0

RLP PCI Card Hardware Definition Document 521-H/W-065

3-10

3.3.7.2 Analog Values Register $10 0004

The Status Collector Analog Values register resides at address $10 0004 and is only readable. It
contains 16 bits indicating the digital values of various measured analog quantities. It is updated
constantly and automatically. Writing this register has no effect. See Table 3-13.

Table 3-13. Status Collector Analog Values Register $10 0004

Bit(s) Function
<31-16> 0 (unused)

<15-08> Ambient Board Temperature Code: x 2.03 = degrees Celsius

<07-00> 5 Volt Board Power Code: x .203 = Watts, or x .0406 = Amperes

3.3.8 STATUS DATA FIFO INPUT SPACE $10 8000

The 9-bit-wide Status Data FIFO holds up to 32 Kbytes of status data and end-of-data markers from
the Status Collector for eventual transfer into the 32-bit-wide DMAI Transfer FIFO. For testing
purposes, the 8-bit Status Data FIFO input (actually 9 bits including end-of-data marker) is aliased
over 128 Kbytes of address space from $10 8000 through $10 FFFF so that sequential writes to
sequential addresses perform sequential writes to the FIFO up to its 32 Kbytes depth. For each 32-bit
write to the space, only the least-significant 9-bits are written into the FIFO. The Status Data FIFO
also has programmable almost-full and almost-empty flags which are used by the Status Collector,
and its corresponding offset registers can be written through this space. It is writeable only;
reading this space has no effect but will return unpredictable values.

3.3.9 PIFS REGISTER SPACE $11 0000

The PIFS contains 32 contiguous 32-bit-wide registers beginning at address $11 0000 for setup,
control, monitoring, data injection, and testing. Access of these registers during a DMA operation
should only be performed by the Status Collector for a Status Collection Operation; host access will
severely degrade performance and is strongly discouraged. Some registers have further
limitations as noted.

[PIFS Register Descriptions to be copied here from PIFS Document by Technical Publications]

3.3.10 RS REGISTER SPACE $12 0000

The RS contains forty 16-bit-wide registers spread out into 40 contiguous 32-bit-wide locations one
16-bit register per 32-bit word beginning at address $12 0000 for setup, control, monitoring, data
injection, and testing. Access of these registers during a DMA operation should only be performed
by the Status Collector for a Status Collection Operation; host access will severely degrade
performance and is strongly discouraged. Some registers have further limitations as noted.

[RS Register Descriptions to be copied here from RS Document by Technical Publications]

3.3.11 RS MEMORY SPACE $13 0000

The RS contains 16 Kbytes of 8-bit-wide internal RAM spread out into 64 Kbytes of 32-bit-wide
address space one memory byte per 32-bit access word beginning at address $13 0000 for working
storage. This memory is not accessible via Status Collection; host access will severely degrade
performance and is strongly discouraged. Writing it while the RS is running will have
unpredictable results and must not be allowed to occur.

RLP PCI Card Hardware Definition Document 521-H/W-065

3-11

[RS Memory Description to be copied here from RS Document by Technical Publications]

3.3.12 SP REGISTER SPACE $14 0000

The SP contains one-hundred-and-twelve 16-bit-wide registers spread out into 112 contiguous 32-
bit-wide locations one 16-bit register per 32-bit word beginning at address $14 0000 for setup,
control, monitoring, data injection, and testing. Access of these registers during a DMA operation
should only be performed by the Status Collector for a Status Collection Operation; host access will
severely degrade performance and is strongly discouraged. Some registers have further
limitations as noted.

[SP Register Descriptions to be copied here from SP Document by Technical Publications]

3.3.13 SP FRAME STATUS MEMORY SPACE $15 0000

The SP uses 4 Kbytes of external 8-bit-wide dual-ported RAM (DPR) to hold a frame status table.
One port of this DPR is directly accessible and appears as 4 Kbytes of 8-bit memory spread out into
16 Kbytes of 32-bit-wide address space one memory byte per 32-bit access word beginning at
address $15 0000. Reading this memory during a DMA operation should only be performed by the
Status Collector for a Status Collection Operation; host access will severely degrade performance
and is strongly discouraged. Writing this memory while the SP is running will have
unpredictable results and must not be allowed to occur.

[SP Frame Status Memory Description to be copied here from SP Document by Technical
Publications]

3.3.14 SP PACKET STATUS MEMORY SPACE $16 0000

The SP uses an external 16k x 32-bit (64 Kbytes) DPR to hold a frame status table. One port of this
DPR is directly accessible and appears beginning at address $16 0000. Reading this memory
during a DMA operation should only be performed by the Status Collector for a Status Collection
Operation; host access will severely degrade performance and is strongly discouraged. Writing
this memory while the SP is running will have unpredictable results and must not be allowed to
occur.

[SP Packet Status Memory Description to be copied here from SP Document by Technical
Publications]

3.3.15 SP INTERNALLY-ACCESSIBLE MEMORY SPACE $18 0000

The SP contains various internal and internally-accessible external 8- and 16-bit-wide
memories. These appear spread out to various extents into 256 Kbytes of 32-bit-wide address space
one memory byte or 16-bit-word per 32-bit access word beginning at address $18 0000. Some of these
memories can be dumped into the SP Data FIFOs. Those FIFOs have programmable almost-full
and almost-empty flags which are used by the Baseboard Interface and SP, and their
corresponding offset registers can be indirectly written through this space. These memories are
not accessible via Status Collection; host access of these memories during a DMA operation will
severely degrade performance and is strongly discouraged. Writing them while the SP is
running will have unpredictable results and must not be allowed to occur.

[SP Internally Accessible Memory Descriptions to be copied here from SP Document by Technical
Publications]

RLP PCI Card Hardware Definition Document 521-H/W-065

4-1

SECTION 4
HARDWARE INSTALLATION

4.1 I NTRODUCTION

The RLP has a total of seven I/O interfaces: four on the I/O panel which is generally accessible
from the rear of the PCI chassis, and three not on the I/O panel which are only accessible from
inside the chassis.

This section provides an overview of the RLP hardware and installation.

4.2 H ARDWARE E LEMENTS

4.2.1 I/O PANEL

The four I/O panel interfaces operate through one LED and five input connectors as depicted in
Figure 4-1.

2.995"

.475"

IRD+5

IRD–9

GND4

GND8

ITC3

GND7

GND2

IRC–6

IRC+1

LED
Green

SMB
Jack

SMB
Jack

SMB
Jack

SMB
Jack

DB-9
Jack

J1
IED+

J2
IED–

J3
IEC+

J4
IEC–

J5
ILF

D1
LED

Figure 4-1. RLP I/O Panel

4.2.2 INTERNAL CONNECTORS

The RLP contains three internal connectors: the MACHPRO connector, the Optional Sorting
Module connector, and the PCI connector. The placement of the internal connectors appears in
Figure 4-2.

RLP PCI Card Hardware Definition Document 521-H/W-065

4-2

U10
RS

U14
SP

U13
DMAI

U16
BBC

U18
SC

J7 OSM

MACHPRO

J6

P1 PCI

D1 LED
J1 IED+

J2 IED-

J3 IEC+

J4 IEC-

J5 ILF

U8
V962PBC

RLP

U5
PIFS

Figure 4-2. RLP Internal Connector Placement

4.2.2.1 MACHPRO/JTAG Connector J6

The MACHPRO/JTAG connector is a 10-pin socket strip (2 rows of 5 sockets each) as depicted in
Figure 4-3.

TCK 1

TMS 3

TDI 5

TDO 7

TRST 9

 2 n/c

 4 GND

 6 n/c

 8 GND

10 ENABLE

Figure 4-3. RLP MACHPRO/JTAG Connector J6

4.2.2.2 Optional Sorting Module Connector J7

The Optional Sorting Module connector is a 200-pin socket strip (4 rows of 50 sockets each) as
depicted in Figure 4-4.

A1

B1

C1

D1

A50

B50

C50

D50

Figure 4-4. RLP Optional Sorting Module Connector J7

4.2.2.3 PCI Connector P1

The PCI connector is a 124-pin double-sided board-edge plug as depicted in Figure 4-5.

RLP PCI Card Hardware Definition Document 521-H/W-065

4-3

B11
(A11)

B14
(A14)

B49
(A49)

B52
(A52)

B62
(A62)

FRONT B1
(BACK) (A1)

Figure 4-5. RLP PCI Connector P1

4.2.3 JUMPERS AND SWITCHES

None.

4.3 I NTERFACES

The RLP has a total of 7 interfaces: LED, ECL data input, RS-422/485 data input, external timecode
reference clock input, MACHPRO/JTAG, Optional Sorting Module, and PCI.

4.3.1 LED

The I/O panel contains one green LED (D1); see Figures 4-1 and 4-2 and Table 4-1. Its operation is
entirely under software control – writing a 0 to bit 1 of the Baseboard Interface Control register $04
0000 turns it on, and writing a 1 turns it off. It can be useful for testing, condition indication,
"heartbeat" indication, or simple power. Upon reset it defaults to "on".

Table 4-1. RLP I/O Panel Interfaces

Ref Name Description
D1 LED LED, controlled by the host (software), green

J1 IED+ SMB jack, ECL positive or single-ended data input, 50Ω impedance
J2 IED- SMB jack, ECL negative data input, 50Ω impedance
J3 IEC+ SMB jack, ECL positive or single-ended clock input, 50Ω impedance
J4 IEC- SMB jack, ECL negative clock input, 50Ω impedance
J5 ILF DB-9 jack, low-frequency (≤10 MHz) input signals:

Pin Signal Description
1 IRC+ RS-422/485 positive clock input, 120Ω impedance
6 IRC- RS-422/485 negative clock input, 120Ω impedance
5 IRD+ RS-422/485 positive data input, 120Ω impedance
9 IRD- RS-422/485 negative data input, 120Ω impedance
3 ITC TTL 10 MHz timecode reference clock signal, 50Ω

impedance

2,4,7,8 GND signal ground

RLP PCI Card Hardware Definition Document 521-H/W-065

4-4

4.3.2 ECL DATA INPUT INTERFACE

The I/O panel contains four industry-standard SMB jacks (J1-4) for accepting differential or
single-ended ECL signals carrying satellite telemetry data at rates of up to 300 Mbps nominal, 400
Mbps theoretical maximum; see Figures 4-1 and 4-2 and Table 4-1. The inputs are: positive data
(IED+), negative data (IED-), positive clock (IEC+), and negative clock (IEC-). They are
terminated to 50Ω into -2 Volts, so they must never be grounded, and 50Ω shielded coaxial cable
should be used. For differential signals, all four inputs must be used and bit 2 of the Baseboard
Interface Control register $04 0000 must be set to 1. For single-ended clock (regardless of data), the
clock signal must be connected to IEC+ while IEC- must be tied through a 100Ω 1% resistor to
ground (the value of bit 2 of the Baseboard Interface Control register $04 0000 is irrelevant). For
single-ended data (regardless of clock), the data signal must be connected to IED+, and then there
are two options: (1) set bit 2 of the Baseboard Interface Control register $04 0000 to 0 (in which case it
is irrelevant whether or not anything is connected to IED-), or (2) tie IED- through a 100Ω 1%
resistor to ground (in which case the value of bit 2 of the Baseboard Interface Control register $04
0000 is irrelevant). Upon reset the bit defaults to 1, or differential.

ECL data enters the PIFS through its bit-parallel-byte-serial data input port, so it must be set up
appropriately. If ECL input is not being used, all inputs should be left unconnected; while
connecting them will not affect performance, it may unnecessarily increase power consumption
and heat dissipation.

4.3.3 RS-422/485 DATA INPUT INTERFACE

The I/O panel contains one DB-9 jack (J5) for low-frequency input signals (ILF); see Figures 4-1
and 4-2 and Table 4-1. It contains pins which will accept both RS-422 and RS-485 type satellite
telemetry data signals at up to 10 Mbps nominal, sometimes higher. The inputs are: positive data
(pin 5, IRD+), negative data (pin 9, IRD-), positive clock (pin 1, IRC+), and negative clock (pin 6,
IRC-). They are terminated with 120Ω to their differential counterparts, so 120Ω shielded twisted-
pair cable should be used. Low-rate data enters the PIFS through its bit-serial data input port
number 0, so it must be set up appropriately. Low-rate inputs left connected when unused have no
effect.

4.3.4 EXTERNAL TIMECODE REFERENCE CLOCK INPUT INTERFACE

The PIFS generates a timecode from a software-loaded register and a 10 MHz clock. An external
high-stability, high-accuracy TTL-level 10 MHz timecode reference clock signal may be supplied
through the I/O panel DB-9 jack J5 for low-frequency input signals (ILF) pin 3 (ITC); see Figures
4-1 and 4-2 and Table 4-1. This input is terminated with 50Ω to ground, so 50Ω shielded coaxial
cable should be used. The signal will be supplied to the PIFS in lieu of the onboard oscillator if bit 5
of the Baseboard Interface Control register $04 0000 is set to 1. Upon reset the bit defaults to 0, or
internal oscillator. A signal left connected when unused has no effect.

4.3.5 MACHPRO/JTAG INTERFACE

The Baseboard Interface, DMA Interface, and Status Collector are implemented in AMD MACH
CPLDs which can be programmed, reprogrammed, and tested in-circuit. This is done through the
MACHPRO/JTAG connector J6; see Figures 4-2 and 4-3 and Table 4-2. Further information is
available from the reference documents listed in Section 1.4 and the RLP schematics.

RLP PCI Card Hardware Definition Document 521-H/W-065

4-5

Table 4-2. RLP MACHPRO/JTAG Connector J6 Signals

Pin Signal Description
1 TCK JTAG Test / AMD MACH Programming Clock

3 TMS JTAG Test / AMD MACH Programming Mode Select

5 TDI JTAG Test / AMD MACH Programming Data In

7 TDO JTAG Test / AMD MACH Programming Data Out

9 TRST JTAG Test / AMD MACH Programming Reset

10 ENABLE AMD MACH Programming Enable

4,8 GND signal ground

2,6 n/c not connected

4.3.6 OPTIONAL SORTING MODULE INTERFACE

Functionality can be added to the RLP using an optional mezzanine board. All signals deemed
useful for this purpose are present in the Optional Sorting Module connector J7; see Figures 4-2 and
4-4 and Table 4-3. The connector also provides convenient access to a large number of signals for
testing purposes. Refer to the RLP schematics for further information.

Table 4-3. RLP Optional Sorting Module Connector J7 Signals

Signal Pin Signal Pin Signal Pin Signal Pin
GND A1 LA24 B1 PK1AE C1 STOE D1

FEOD A2 LA23 B2 PK2AE C2 FASTCKI D2

FD7 A3 VDD B3 PK3AE C3 LADS D3

FD6 A4 LA22 B4 PRJAE C4 LREADY D4

FD5 A5 LA21 B5 VCC C5 LW_R D5

FD4 A6 LA20 B6 STAE C6 LHOLD D6

FD3 A7 LA19 B7 ST1E C7 GND D7

FD2 A8 LA18 B8 ST2E C8 LHOLDA D8

VCC A9 LA17 B9 ST3E C9 LCLK D9

FD1 A10 LA16 B10 FR1E C10 LBLAST D10

FD0 A11 GND B11 FR2E C11 LBTERM D11

LD31 A12 LA15 B12 MISCE C12 TDI D12

LD30 A13 LA14 B13 VDD C13 TDO D13

LD29 A14 LA13 B14 BITE C14 TCK D14

LD28 A15 LA12 B15 FRJE C15 VCC D15

LD27 A16 LA11 B16 PK1E C16 TMS D16

VDD A17 LA10 B17 PK2E C17 TRST D17

LD26 A18 LA9 B18 PK3E C18 ENABLE D18

LD25 A19 VCC B19 PRJE C19 FRCKO D19

LD24 A20 LA8 B20 STE C20 SCL D20

LD23 A21 LA7 B21 GND C21 SDA D21

LD22 A22 LA6 B22 FLD C22 INT D22

LD21 A23 LA5 B23 ST1RE C23 VDD D23

LD20 A24 LA4 B24 ST2RE C24 OSMPRES D24

GND A25 LA3 B25 ST3RE C25 RESET D25

LD19 A26 LA2 B26 FR1RE C26 FRCKI D26

LD18 A27 VDD B27 FR2RE C27 NC D27

RLP PCI Card Hardware Definition Document 521-H/W-065

4-6

LD17 A28 ST1AF B28 MISCRE C28 NC D28

LD16 A29 ST2AF B29 VCC C29 GND D29

LD15 A30 ST3AF B30 BITRE C30 NC D30

LD14 A31 FR1AF B31 FRJRE C31 GND D31

LD13 A32 FR2AF B32 PK1RE C32 NC D32

VCC A33 MISCAF B33 PK2RE C33 GND D33

LD12 A34 BITAF B34 PK3RE C34 NC D34

LD11 A35 GND B35 PRJRE C35 GND D35

LD10 A36 FRJAF B36 STRE C36 NC D36

LD9 A37 PK1AF B37 VDD C37 GND D37

LD8 A38 PK2AF B38 ST1OE C38 NC D38

LD7 A39 PK3AF B39 ST2OE C39 VCC D39

LD6 A40 PRJAF B40 ST3OE C40 NC D40

VDD A41 STAF B41 FR1OE C41 GND D41

LD5 A42 ST1AE B42 FR2OE C42 NC D42

LD4 A43 VCC B43 MISCOE C43 GND D43

LD3 A44 ST2AE B44 BITOE C44 NC D44

LD2 A45 ST3AE B45 GND C45 GND D45

LD1 A46 FR1AE B46 FRJOE C46 NC D46

LD0 A47 FR2AE B47 PK1OE C47 VDD D47

LA27 A48 MISCAE B48 PK2OE C48 NC D48

LA26 A49 BITAE B49 PK3OE C49 NC D49

LA25 A50 FRJAE B50 PRJOE C50 NC D50

4.3.7 PCI BUS INTERFACE

The RLP interfaces directly with a host computer through the industry-standard PCI bus connector
P1; see Figures 4-2 and 4-5 and Table 4-4. Further information is available from the reference
documents listed in Section 1.4 and the RLP schematics.

Table 4-4. RLP PCI Bus Connector P1 Signals

Signal Pin Signal Pin Signal Pin Signal Pin
TRST A1 AD16 A32 VN12_0 B1 AD17 B32

VP12_0 A2 VDD A33 TCK B2 CBE2 B33

TMS A3 FRAME A34 GND B3 GND B34

TDI A4 GND A35 TDO B4 IRDY B35

VP5_0 A5 TRDY A36 VP5_0 B5 VDD B36

INTA A6 GND A37 VP5_0 B6 DEVSEL B37

INTC A7 STOP A38 INTB B7 GND B38

VP5_0 A8 VDD A39 INTD B8 LOCK B39

NC A9 SDONE A40 PRSNT1 B9 PERR B40

NC A10 SBO A41 NC B10 VDD B41

NC A11 GND A42 PRSNT2 B11 SERR B42

KEYWAY A12 PAR A43 KEYWAY B12 VDD B43

KEYWAY A13 AD15 A44 KEYWAY B13 CBE1 B44

NC A14 VDD A45 NC B14 AD14 B45

RST A15 AD13 A46 GND B15 GND B46

NC A16 AD11 A47 CLK B16 AD12 B47

GNT A17 GND A48 GND B17 AD10 B48

RLP PCI Card Hardware Definition Document 521-H/W-065

4-7

GND A18 AD9 A49 REQ B18 M66EN B49

NC A19 KEYWAY A50 NC B19 KEYWAY B50

AD30 A20 KEYWAY A51 AD31 B20 KEYWAY B51

VDD A21 CBE0 A52 AD29 B21 AD8 B52

AD28 A22 VDD A53 GND B22 AD7 B53

AD26 A23 AD6 A54 AD27 B23 VDD B54

GND A24 AD4 A55 AD25 B24 AD5 B55

AD24 A25 GND A56 VDD B25 AD3 B56

IDSEL A26 AD2 A57 CBE3 B26 GND B57

VDD A27 AD0 A58 AD23 B27 AD1 B58

AD22 A28 NC A59 GND B28 NC B59

AD20 A29 REQ64 A60 AD21 B29 ACK64 B60

GND A30 VP5_0 A61 AD19 B30 VP5_0 B61

AD18 A31 VP5_0 A62 VDD B31 VP5_0 B62

4.4 I NSTALLATION G UIDELINES

Follow the standard procedures for installing a PCI expansion card in a PCI host chassis. In brief,
this involves having the power off but not unplugged (maintaining the integrity of the ground),
properly grounding the installer and surroundings, opening the chassis, removing an I/O panel
filler plate if necessary, inserting the RLP, fastening the I/O panel screw, closing the chassis, and
lastly connecting all appropriate input cables. The driver and application software must also be
installed.

4.5 E NVIRONMENTAL R EQUIREMENTS

The RLP is a standard commercial-grade computer product. It will operate from 0 to +70 degrees
Centigrade. It is not designed to withstand any unusual levels of physical shock or nuclear or
electromagnetic radiation. It is ESD-sensitive and all appropriate precautions must be taken
before and during its handling. It is only specified to operate in a PCI Revision 2.1-compliant host
platform. Any attempt to operate the RLP in a manner inconsistent with these specifications will
void any warranty, express or implied, and will run the risk of damage to the RLP.

RLP PCI Card Hardware Definition Document 521-H/W-065

5-1

SECTION 5
OPERATING PRINCIPLES

5.1 I NTRODUCTION

During normal operation, the RLP is basically seen by the satellite telemetry bitstream provider
as a data sink, and by the PCI host computer as a PCI data source. Since the RLP has no MPU of its
own, it behaves as a simple data flow device with straightforward operation: set the card up prior to
a data session, and service it (move data off the card as it becomes available) during the session.
The most critical aspect is in servicing the card fast enough and efficiently enough to avoid data
loss.

This section outlines procedures to set up, control, and monitor the RLP and the flow of data.

5.2 P RELIMINARIES

For the RLP to function, the serial electrically-eraseable programmable ROM (EEPROM) and the
three CPLDs must be programmed. In particular, the EEPROM must be programmed out-of-
circuit prior to board assembly. While it is reprogrammable in-circuit via the PCI bus, the board
must first function on the bus to make reprogramming possible, but because PCI configuration is
read from the EEPROM by the PBC, this cannot happen without valid content. The CPLDs can be
programmed out-of-circuit prior to assembly or in-circuit afterwards via the MACHPRO
connector. In all cases, device reprogramming is a development function only and should not be
encountered during normal end-user operation; further information is available from the
documents listed in Section 1.4 .

5.3 S ETUP

Upon power-up or reset of the PCI host computer, the RLP’s PBC automagically reads PCI
configuration data from its onboard ROM and sets up its PCI interface. Then depending on the
host, either the operating system (OS) or the driver software reads the RLP’s PCI configuration and
initializes itself accordingly. At this point the RLP is ready to be set up for a data session by the
application software.

5.3.1 RESETS AND INPUTS

After power-up or reset of the PCI host computer, most of the RLP circuits are held in reset by the
Baseboard Interface. The only circuits that are accessible in this condition are the DMA-chaining
memory, the Baseboard Interface, and the PBC. All the resets can be released at this point through
the Baseboard Interface Control register unless activity exists at the ECL inputs, in which case the
ECL Serial-to-Parallel Converter Reset bit should be left asserted until the data session is ready to
begin. Activity on the RS-422/485 and optional timecode reference clock inputs has no effect.
Refer to Section 3.3.2.1 and the schematics for more details.

5.3.2 PCI INTERFACE

The PBC must be set up. Local bus byte enables are not used (always enabled) and local bus parity
checking is not used. The PBC runs off a 33 MHz local bus clock. It inputs the interrupt from the
Baseboard Interface on INTC, inputs the interrupt from the Optional Sorting Module on INTD,
outputs the interrupt to the PCI bus on INTA, and does not use INTB (which is connected to the PCI
bus). The PCI JTAG Boundary Scan bus is connected to the PIFS and SP only. Refer to the
documents listed in Section 1.4 and the schematics for more details.

RLP PCI Card Hardware Definition Document 521-H/W-065

5-2

5.3.3 INPUT INTERFACE

If ECL input is being used, single-ended or differential mode must be selected with the ECL Input
Type Select bit of the Baseboard Interface Control register; default is differential. If an external
timecode reference 10 MHz clock is being used, PIFS Timecode Reference Clock Select bit of the
same register must be set; default is internal oscillator. Refer to Section 3.3.2.1 and the
schematics for more details.

5.3.4 PIFS

The PIFS must be set up according to user and data session requirements; it has 32 contiguous 32-
bit registers. If the input source is ECL, use the PIFS parallel data input port. If the input source is
RS-422/485, use the PIFS serial input port number 0. Data can also be injected by the host through a
PIFS register. Data can be output from the PIFS either 8 or 16 bits at a time; 16 is normally
suggested for optimal performance when outputting to the RS, but 8 bits must be used if the data is
routed around the RS and SP using FS-Direct mode discussed in Section 5.3.5, since that is the size
of the destination Data FIFO. The timecode reference clock is 10 MHz, and the processing clock is
50 MHz. Refer to the documents listed in Section 1.4 and the schematics for details.

5.3.5 DATA ROUTING MODE

Data may be routed through the RLP in three ways: it can go from the PIFS through the RS then
through the SP into the Data FIFOs (SP Mode), from the PIFS through the RS into a Data FIFO (RS-
Direct Mode), or from the PIFS into a Data FIFO (FS-Direct Mode). This must be selected with the
Processing Mode bits of the Baseboard Interface Control register; default is SP Mode. If the RS
and/or SP are bypassed, it is suggested that they be set up so they do not inadvertently read from
their input FIFOs or write to their output FIFOs. Refer to Section 3.3.2.1 and the schematics for
more details.

5.3.6 RS

The RS must be set up according to user and data session requirements; it has forty 16-bit registers
appearing in 40 contiguous 32-bit locations, one register per location. The input data size of 8 or 16
bits must match the output data size set up in the PIFS. Data output from the RS can be either 8 or 16
bits wide; 16 is normally suggested for optimal performance when outputting to the SP, but if the
data is routed around the SP using RS-Direct mode discussed in Section 5.3.5, it must be 8 bits since
that is the size of the destination Data FIFO. The RS has no external memory and does not perform
routing. It runs off the 50 MHz processing clock. Refer to the documents listed in Section 1.4 and
the schematics for more details.

5.3.7 SP

The SP must be set up according to user and data session requirements; it has one-hundred-and-
twelve 16-bit registers appearing in 112 contiguous 32-bit locations, one register per location. Input
data size of 8 or 16 bits must match the output data size set up in the RS. Some of the SP’s internal
and external memories must be set up: it has 512k x 32 bits of 20 ns Packet Data Buffer SRAM, 512k
x 32 bits of 20 ns Packet Lookup Table SRAM, 512k x 8 bits of 20 ns Frame Lookup Table SRAM, 16k
x 32 bits of Packet Status Table DPR, and 4k x 8 bits of Frame Status Table DPR.

The SP outputs to four 32k x 8 bit Packet Service Data FIFOs and eight 32k x 8 bit Frame Service
Data FIFOs with programmable flags that must be programmed through the SP (discussed in
Section 5.3.11).

RLP PCI Card Hardware Definition Document 521-H/W-065

5-3

It runs off the 50 MHz processing clock. Refer to the documents listed in Section 1.4 and the
schematics for details.

5.3.8 DMA INTERFACE

The only setup the DMA Interface has is two bits in its Control register. The DMA Interface
Transfer FIFO Partial Reset bit resets all but the programmable flags when set to 0; after power-up
or reset of the PCI host computer, it defaults to not-reset. The Data Byte Order Mode bit selects
whether the chronologically first telemetry data byte appears in PCI data bits 31-24 with subsequent
bytes following in descending byte positions, when set to 0, or bits 7-0 with subsequent bytes
following in ascending byte positions, when set to 1; after power-up or reset of the PCI host
computer, it defaults to bits 31-24. Refer to Section 3.3.4.5 for more information.

The DMA Interface buffers data in four 32k x 8-bit FIFOs which appear to the user as a single 32k x
32-bit FIFO. This has programmable flags which must be programmed through the DMA Interface
(discussed in Section 5.3.11).

5.3.9 STATUS COLLECTOR

The Status Collector has no setup, but its 32k x 8-bit output Data FIFO has programmable flags that
must be programmed through the Status Collector Data FIFO Input Space (discussed in Section
5.3.11).

5.3.10 INTERRUPTS

The same conditions, signals, and registers used to set up, control, and monitor interrupts are also
used for polling, the only difference being that for polling, the assertion of the baseboard interrupt
signal is disabled. Therefore where polling is not explicitly mentioned in the discussion, it is
implied.

The Baseboard Interface Control register Interrupt Source Indication Mode bit must be set up. If
this bit is set to 1 or “masked”, the signals indicated in the Interrupt Source registers appear
masked as specified in the Interrupt Source Mask registers, and thus show precisely the source(s)
that are generating the baseboard interrupt. If set to 0 or “raw”, all the interrupt source signals
appear in the actual state in which they exist on the board regardless of whether or not they are
masked, and thus regardless of whether or not they are being used to generate the baseboard
interrupt. Upon power-up or reset of the PCI host computer, this bit defaults to raw. See Section
3.3.2.1 for more details.

The 54 interrupt source masks must be set up. These reside in Baseboard Interface Interrupt
Source Mask registers. If a source is masked, it will not be used to generate the baseboard
interrupt, and if the Interrupt Source Indication Mode is also set to masked, the interrupt source
will always appear as deasserted in its Interrupt Source register regardless of whether or not it is
really asserted. Upon power-up or reset of the PCI host computer, all interrupt sources default to
masked. See Section 3.3.2 for more details.

5.3.11 PROGRAMMABLE FIFO FLAGS

All 13 Data FIFOs and the Transfer FIFO have programmable almost-full and almost-empty
flags which can be reprogrammed differently from their defaults. Refer to the documents listed in
Section1.4 for the basic default and programming information. To program any of these FIFOs,
the Universal FIFO Programmable Flag Load bit of the Baseboard Interface Control register must
be set to 0 or “load” while programming data is being written. At all other times it must be set to 1 or

RLP PCI Card Hardware Definition Document 521-H/W-065

5-4

“normal”. After power-up or reset of the PCI host computer, this bit defaults to “load”. See
Section3.3.2.1 for more details.

The twelve Data FIFOs on the outputs of the SP are programmed through the SP. This involves
writing the programming data into SP memory and then causing the SP to dump that memory into
the selected FIFOs (with the Baseboard Interface Control register Universal FIFO Programmable
Flag Load bit set). The SP can individually program each FIFO to different values, or
simultaneously program multiple FIFOs to the same values. Refer to the documents listed in
Section1.4 for more information. The SP uses the almost-full flags of these FIFOs to determine
when to stop writing telemetry data into them, so they must never be programmed to higher than
nine bytes below full; the defaults are sufficient for these flags. If they are programmed lower, all
but nine bytes of the space above that will go unused, effectively creating smaller FIFOs. For
service interrupts, the half-full and programmable-almost-empty flags are the most useful. Half-
full is a good place to start, and if performance or priority issues warrant, almost-empty can be
programmed appropriately and used instead or in addition. For almost-empty and empty flags, it
is the inverse that is detected to cause an interrupt, or not-almost-empty and not-empty. In this way
the almost-empty flag acts as another almost-full flag. See Section3.3.2 for more details.

The Data FIFO on the output of the Status Collector is programmed directly through the Status
Collector Output Data FIFO Input Space (with the Baseboard Interface Control register Universal
FIFO Programmable Flag Load bit set). On each 32-bit write to the space, the least-significant 9
bits are written into the FIFO. The Status Collector uses the almost-full flag to determine when to
stop writing status data, so it must never be programmed to higher than four bytes below full; the
default is sufficient for this flag. If it is programmed lower, all but four bytes of the space above
that will go unused, effectively creating a smaller FIFO. If packet and frame status are not being
collected, the maximum possible amount of status data per collection is so small that the Status
Collection Done indicator is the only useful service interrupt source; the FIFO flags can be
ignored. Otherwise, the half-full and programmable-almost-empty flags are the most useful.
Half-full is a good place to start, and if performance or priority issues warrant, almost-empty can
be programmed appropriately and used instead or in addition. For almost-empty and empty flags,
it is the inverse that is detected to cause an interrupt, or not-almost-empty and not-empty. In this
way the almost-empty flag acts as another almost-full flag. See Section3.3.2 for more details.

The 32k x 32-bit DMA Interface Transfer FIFO is composed of four 32k x 8-bit FIFOs in parallel,
and they all must be programmed to the same value through the through the DMAI Transfer FIFO
Input Space (with the Baseboard Interface Control register Universal FIFO Programmable Flag
Load bit set). The DMA Interface uses the almost-full flags to determine when to stop transferring
telemetry data into the FIFO, so it must never be programmed to higher than four bytes below full;
the default is sufficient for this flag. If it is programmed lower, all but four bytes of the space above
that will go unused, effectively creating a smaller FIFO. The DMA Interface uses the almost-
empty flag to perform bursting for the PCI DMA. Initially, while the amount of data in the
Transfer FIFO is below the almost-empty threshold and a Byte Transfer is in progress, local bus
reads from PCI space are held off. Then after the threshold has been exceeded, while the Transfer
FIFO is not empty, reads are fulfilled, forming a maximally-dense PCI burst. If the Transfer
FIFO becomes empty before the Transfer is complete, the DMA Interface once again holds off reads
to build up another burst. Therefore the almost-empty flag sets the minimum size of the PCI burst
and should be set to the largest value tolerable; 1 Kbytes to 4 Kbytes may be a good place to start.
That works out to 256 B to 1 Kbytes per each of the four component FIFOs. Each 32-bit write to the
space writes the least-significant 8 bits to all four FIFOs simultaneously, so programming all is
like programming just one.

RLP PCI Card Hardware Definition Document 521-H/W-065

5-5

5.3.12 BASEBOARD INTERFACE

The only setup for the Baseboard Interface involves the reset, input, routing, and interrupt
functions discussed in Section 5.3.1, Section 5.3.3, Section 5.3.5, and Section 5.3.10, respectively.

5.4 O PERATION

When the setup is complete, the PIFS inputs are enabled, the ECL Serial-to-Parallel Converter
Reset is released (if used), and the baseboard interrupt is enabled (if used), the RLP is ready to
begin a data session. The typical service cycle consists of four phases: waiting for an
accumulation of data, initiating a data transfer, waiting for completion of the DMA, and then
rechecking for more data. At the conclusion of a session, any data remaining in-process may be
flushed. If interrupt latency is found to limit performance unacceptably, polling must be used
when waiting for data; whether or not polling is superior to interrupts for detecting when a DMA is
complete is system-dependent and must be determined empirically.. The same conditions,
signals, and registers used to set up, control, and monitor interrupts are also used for polling, the
only difference being that for polling, the assertion of the baseboard interrupt signal (and perhaps
the DMA-done interrupt) is disabled. Therefore where polling is not explicitly mentioned in the
discussion, it is implied.

5.4.1 W AIT FOR DATA

While no DMA is in progress, software waits for enough data to accumulate in one or more 8-bit-
wide Data FIFOs to initiate a Byte Transfer into the 32-bit-wide Transfer FIFO. It may wait for an
interrupt or may poll the Baseboard Interface Interrupt Source register(s) A and perhaps B. During
this phase it may also check a heartbeat timer and toggle the LED by changing the Baseboard
Interface Control register LED bit, or initiate a Status Collection by writing a request to the Status
Collector Status Request register.

5.4.2 INITIATE A TRANSFER

Upon receiving an interrupt, the software first clears the DMA Done interrupt in the PBC and
disables the baseboard interrupt with the Baseboard Interface Interrupt Source Mask register A
Baseboard Interrupt Enable bit,, then reads the Baseboard Interface Interrupt Source register A and
perhaps B to ascertain the source. Software has the subset of the 54 possible sources that it did not
mask during setup prioritized by importance, for example: Foremost FIFO Overflow indicator
first, followed by the RS-to-SP FIFO full flag, then the DMAI FIFO full flag, then the SP Data FIFO
almost-full flags, then the SP Data FIFO almost-empty flags, then the Status Data FIFO almost-
full flag, then the Status Data FIFO almost-empty flag. Depending on the condition, software may
elect to take special measures such as clearing some FIFOs in order to prevent data loss in others.
It might also maintain a record of previous sources that have not been serviced in order to detect
when lower-priority sources have been waiting too long; it can then increase their relative priority
to facilitate them getting serviced.

Once software determines which source to service, it sets up a Byte Transfer by writing a Byte
Transfer Request to an unoccupied DMA Interface Control registers. The Transfer Size is equal
to (or less than) the amount of data indicated to be in the Data FIFO by the source FIFO flag. If this
is the first cycle of the session or the other Byte Transfer channel is unoccupied, a second Byte
Transfer is also initiated if possible.

After the Byte Transfer(s) have been initiated, software sets up one DMA in the PBC. For optimum
performance, the DMA is for the last previously-initiated Byte Transfer, if such exists, or
otherwise for the first currently-initiated Byte Transfer. By always being one Byte Transfer

RLP PCI Card Hardware Definition Document 521-H/W-065

5-6

ahead of the DMAs, the DMA Interface circuit will be kept busy instead of falling idle as it would
after completing the last DMA of the previous cycle and waiting for the first Byte Transfer of the
current cycle. Using this form of pipelining, optimum performance can be achieved.

5.4.3 W AIT FOR DMA COMPLETION

A DMA transaction begins as soon as it is initiated. While a DMA transaction is ongoing, PCI
bus traffic must be kept to an absolute minimum to ensure optimum performance. This means the
host should not attempt to access the RLP at all until the DMA is complete and it receives the DMA-
Done interrupt. That is, unless it is polling the PBC to ascertain this condition. It is unclear which
has the larger impact, interrupt latency of the DMA-Done interrupt or bus interference of polling;
this must be experimentally-determined on a platform-by-platform basis.

During this time the host is free to perform local processing, although it will most likely be called
upon to transfer data already in host memory to an I/O device for storage.

5.4.4 RECHECK FOR DATA

When the DMA has completed, the software clears the DMA Done interrupt in the PBC, and if
appropriate, clears the foremost FIFO overflow condition with the Baseboard Interface Control
register Clear Foremost FIFO Overflow bit. It then checks the Baseboard Interface Interrupt
Source register(s) so that no time is wasted if data exists to transfer. In this case, it goes back to the
“Initiating a Transfer” phase. Otherwise, it re-enables the baseboard interrupt with the Baseboard
Interface Interrupt Source Mask register A Baseboard Interrupt Enable bit and then goes back to the
“Waiting for Data” phase.

5.4.5 FLUSH REMAINING DATA

Eventually after a data session has terminated, all of the interrupt sources have been serviced and
none remain. At this point some data may still exist in the Data FIFOs. It is easily extracted by
performing one additional Byte Transfer per Data FIFO with a Transfer Size equal to that
indicated by the lowest interrupt source that remains unasserted. After each Byte Transfer, the
corresponding DMA Interface Fill Count register is read because it indicates the amount of filler
bytes (copies of the last valid data byte) that was necessary to append to the end of the data to fulfill
the requested Byte Transfer. A simple subtraction yields the exact amount of data that has been
flushed from the Data FIFO.

If the SP was used and was set up to operate on partial packet pieces, some of those may remain in
SP memories. If these are desired, they must be extracted individually directly from the SP. More
information is available from the documents referenced in Section 1.4.

RLP PCI Card Hardware Definition Document 521-H/W-065

6-1

SECTION 6
SCHEMATIC DESCRIPTION

6.1 I NTRODUCTION

In addition to the customary two assembly and one drill drawings, the RLP schematic has 13
pages. All drawings are provided in Appendix A. There are also three CPLDs and one ROM, and
their programs are listed in Appendix B. This section describes the drawings and program
listings.

6.2 D RAWING D IRECTORY

The RLP drawings are listed in Table 6-1.

Table 6-1. RLP Drawing Directory

Sheet Title

- Top Assembly

- Bottom Assembly

- Drill Master

1 Table of Contents

2 Input Connectors & Interface, LED, PIFS ASIC & FIFO, Processing & Timestamp Clocks

3 RS ASIC & FIFO, SP Packet Buffer Memory

4 SP ASIC, Frame Lookup & Status Memories

5 SP Packet Lookup & Status Memories

6 SP Frame Service FIFOs

7 FS-/RS-Direct MUX, SP Frame & Packet Service FIFOs, Status FIFO

8 DMA Interface CPLD, FIFOs, Clock

9 Baseboard Interface CPLD, DMA-Chaining Memory, Local Bus Isolation Switch,
Temperature Sensor, A/D Converter, Status Collector CPLD

10 Optional Sorting Module Connector, PCI Bus Interface IC & Connector, Local Bus Clock,
MACHPRO Connector

11 +/-3.3V, -5.2V, +/-12V Power, Terminations, Bypasses

12 +5V Power, Current Sensor, Bypasses

13 Test Points

6.3 D RAWING D ESCRIPTION

6.3.1 TOP ASSEMBLY

Used by assembly to place the devices on the front side of the RLP printed circuit board

6.3.2 BOTTOM ASSEMBLY

Used by assembly to place the devices on the back side of the RLP printed circuit board

RLP PCI Card Hardware Definition Document 521-H/W-065

6-2

6.3.3 DRILL MASTER

Used by fabrication to cut and drill the RLP printed circuit board

6.3.4 SHEET 1

RLP schematic table of contents, list of design revisions

6.3.5 SHEET 2

SMB (ECL) and DB-9 (RS-422/485) input connectors, LED, ECL input circuit, RS-422/485 input
circuit, PIFS ASIC, PIFS output FIFO, internal 10 MHz timecode reference clock oscillator, 50
MHz processing clock oscillator and distribution circuit

6.3.6 SHEET 3

RS ASIC, RS output FIFO, SP packet buffer SRAMs

6.3.7 SHEET 4

SP ASIC, SP frame lookup SRAM, SP frame status DPR

6.3.8 SHEET 5

SP packet lookup SRAMs, SP packet status DPRs

6.3.9 SHEET 6

SP output frame service FIFOs

6.3.10 SHEET 7

SP/RS-Direct/FS-Direct multiplexer data routing circuit, multiplexed output data FIFO, SP output
packet service FIFOs, Status Collector output data FIFO

6.3.11 SHEET 8

DMA Interface CPLD, DMAI transfer FIFOs, 60 MHz DMAI byte transfer clock oscillator and
distribution circuit

6.3.12 SHEET 9

Baseboard Interface CPLD, DMA-chaining SRAMs, local telemetry/status bus isolation switch,
Status Collector CPLD, temperature sensor, A/D converter

6.3.13 SHEET 10

Optional Sorting Module connector, V962PBC ASIC, PCI bus connector, PCI configuration
EEPROM, 33 MHz local bus clock oscillator & distribution circuit, AMD MACHPRO/JTAG
connector, local bus pull resistors

RLP PCI Card Hardware Definition Document 521-H/W-065

6-3

6.3.14 SHEET 11

Clock line terminations, +3.3V bypass capacitors, +/-12V bypass capacitors, -5.2V power converter
& bypass capacitors, -3.3V power converter & bypass capacitors, ECL terminations

6.3.15 SHEET 12

+5V bypass capacitors, current sensor circuit

6.3.16 SHEET 13

Test points for signals not available on Optional Sorting Module connector

6.4 P ROGRAM L ISTING D IRECTORY

The RLP programmable device program listings are listed in Table 6-2.

Table 6-2. RLP Program Listing Directory

Pages Description

5 Baseboard Interface Program

6 DMA Interface Program

8 Status Collector Program

1 PCI Configuration ROM Data

6.5 P ROGRAM L ISTING D ESCRIPTION

6.4.1 BASEBOARD INTERFACE

The Baseboard Interface is an AMD MACH465/466 CLPD; see the references listed in Section 1.4
for device information.

It inputs 54 signals that could cause a PCI interrupt, indicates them in a pair of registers, allows
them to be individually masked in another pair of registers, and generates the interrupt signal for
the PBC to use to generate the PCI Interrupt.

The Baseboard Interface provides control of all device resets, FIFO programming signals, LED
state, differential/single-ended ECL data input mode, internal/external PIFS timecode reference
clock select, and SP/RS-Direct/FS-Direct data routing mode in a single register.

The Baseboard Interface arbitrates with the Status Collector for host access to the status bus
segment, and it operates the status/telemetry bus segment isolation switch.

The Baseboard Interface decodes the addresses to its register space, the overall status bus space,
and the DMA-chaining RAM.

6.4.2 DMA INTERFACE

The DMA Interface is an AMD MACH465/466 CLPD; see the references listed in Section 1.4 for
device information.

RLP PCI Card Hardware Definition Document 521-H/W-065

6-4

Upon receipt of a Data Transfer Request in one of two Control registers, the DMA Interface CPLD
transfers the requested number of bytes from the requested one of thirteen 8-bit-wide source Data
FIFOs and packs them into the 32-bit-wide DMAI Transfer FIFO at one byte per 60 MHz clock
cycle. If the source FIFO goes empty, the DMA Interface fills the remainder of the transfer with
filler bytes (copies of the last valid data byte) and counts the number of filler bytes in the
corresponding one of two Fill Count registers.

Upon a local bus read of the DMAI Transfer FIFO output space, the DMA Interface controls the
transaction. It supports bursting at up to the maximum local bus speed of one 32-bit word every 33
MHz local bus clock cycle. It holds off the first read until the DMAI Transfer FIFO programmable
almost-empty flag goes not-almost-empty, and then fulfills reads until either the DMA is complete
or the DMAI Transfer FIFO goes empty. If the DMAI Transfer FIFO goes empty before the Byte
Transfer Operation that is feeding it is complete, the DMA Interface returns to the hold state
(waiting for not-almost-empty) to build up for another burst.

Upon a local bus read from DMAI Data FIFO output space or a local bus write into the DMAI
Transfer FIFO input space, the DMA Interface controls the transaction. It does not necessarily
support this at the maximum local bus rate.

If an Optional Sorting Module is present, the DMA Interface disables itself, allowing the Module to
read from the Data FIFOs and respond to local bus reads and writes from the PBC.

The DMA Interface decodes the addresses to its register space, the SP Data FIFO output space, the
DMAI Transfer FIFO input space, and the DMAI Transfer FIFO output space.

6.4.3 STATUS COLLECTOR

The Status Collector is an AMD MACH465/466 CLPD; see the references listed in Section 1.4 for
device information.

Upon receipt of a Status Request in the Status Request register, the Status Collector CPLD collects
all the requested status from the requested devices on the status bus segment and deposits it into an
8-bit data FIFO with a local bus clock rate of 33 MHz. It does not deposit the "spacer" bytes used to
align 8- and 16-bit data to 32-bit boundaries.

The Status Collector constantly and autonomously reads the temperature and current values from
the ADC and stores them in a register.

The Status Collector arbitrates with the Baseboard Interface for host access of the status bus
segment.

The Status Collector decodes all the addresses on the status bus segment including its register
space and the Status Data FIFO input space.

6.4.4 PCI CONFIGURATION ROM

The PCI Configuration ROM is an ATMEL AT24C02 serial EEPROM; see Section 1.4 for device
information.

It contains the first 128 bytes of PCI configuration space that the PBC reads to set its PCI
Configuration values after power-up or reset. See the references listed in Section 1.4 for details.

RLP PCI Card Hardware Definition Document 521-H/W-065

AB-1

ABBREVIATIONS AND ACRONYMS

This is a list of the meanings of the abbreviations and acronyms found in this document; see
Table AB-1.

Table AB-1. Abbreviations and Acronyms

Term Definition

ADC analog-to-digital converter

AMD Advanced Micro Devices

AOS Advanced Orbiting Systems

ASIC application-specific integrated circuit

BTD bit transition density

CCSDS Consultative Committee for Space Data Systems

CMOS complimentary metal-oxide-semiconductor

COTS commercial off-the-shelf

CPLD complex PLD

CRC cyclic redundancy code

DEC Digital Equipment Corporation

DMA direct memory access

DMAI DMA Interface

DPR dual-ported SRAM

DSDP Desktop Satellite Data Processor

DSTD Data Systems Technology Division

ECL emitter-coupled logic

EEPROM electrically-eraseable PROM

EPROM eraseable PROM

FIFO first-in, first-out

FS Frame Synchronizer

GaAs Gallium-Arsenide

GSFC Goddard Space Flight Center

IBM International Business Machines

I/O input/output

JTAG Joint Test Action Group

LED light-emitting diode

MO&DSD Mission Operations and Data Systems Directorate

MPU microprocessing unit

MSB Microelectronic Systems Branch

MUX multiplexer

NASA National Aeronautics and Space Administration

Nascom NASA Communications

RLP PCI Card Hardware Definition Document 521-H/W-065

AB-2

ABBREVIATIONS AND ACRONYMS, CONT'D

NGS Next Generation Systems

NRZ non-return-to-zero

OS operating system

P&P Plug-and-Play

PBC PCI Bridge Chip

PCI Peripheral Components Interface

PIFS Parallel, Integrated FS

PLD programmable logic device

PROM programmable ROM

RAM random-access memory

RLP Return-Link Processor

ROM read-only memory

RS Reed-Solomon Error Detector/Corrector

SMB sub-miniature "B"

SP CCSDS Packet Telemetry & AOS Service Processor

SRAM static RAM

TTL transistor-transistor logic

VME Versa-Module Euroboard

RLP PCI Card Hardware Definition Document 521-H/W-065

A-1

APPENDIX A
BOARD LAYOUT AND SCHEMATICS

Appendix A includes original, unsigned, A-size top and bottom printed circuit board assembly
drawings, drill master drawing, and schematic diagrams, as listed in Table A-1. Refer to Section
6 for a description of each sheet of the schematics.

Table A-1. Directory of Drawings and Diagrams

Description Revision Level Number of Sheets

Assembly Drawings “–” 2

Drill Master Drawing “–” 1

Schematic Diagrams “–” 13

RLP PCI Card Hardware Definition Document 521-H/W-065

B-1

APPENDIX B
PROGRAMMABLE DEVICE LISTINGS

This appendix includes the source file listings for all programmable devices used in the RLP, as
listed in Table B-1.

Table B-1. Directory of Programmable Device Listings

Title Issue Date Number of
Pages

Baseboard Interface ? ? 5

DMA Interface ? ? 6

Status Collector ? ? 8

PCI Configuration ROM ? ? 1

RLP PCI Card Hardware Definition Document 521-H/W-065

B-2

B.1 B ASEBOARD I NTERFACE P ROGRAM L ISTING

The Baseboard Interface development directories consist of bcon and bcon_1. This is the source
file, bcon/bcon.src.

#TITLE 'Board Controller';
#ENGINEER 'Steve Koubek';
#REVISION '-';
#PROJECT 'NextGen Return Link Processor Card';
#COMMENT '';

" REVISION HISTORY
" 10/22/96 Created rev -.
"

PROCEDURE SP_hold

(INPUT spfaf[11..0]; "pins
 OUTPUT spfaf0t3, spfaf4t11; "pins
);

spfaf0t3 = *(spfaf[3],spfaf[2],spfaf[1],spfaf[0]);
spfaf4t11 = *(spfaf[11],spfaf[10],spfaf[9],spfaf[8],
 spfaf[7],spfaf[6],spfaf[5],spfaf[4]);

END SP_hold;

PROCEDURE WR_gen

(INPUT addr[27..18]; "pins
 INPUT clk;

"pins
 INPUT ads;

"pins
 INPUT blast; "pins
 INPUT wr;

"pins
 INPUT ack;

"pins
 INPUT reset; "pins
 INPUT scrst; "pins
 OUTPUT cint CLOCKED_BY clk RESET_BY /reset; "node
 OUTPUT xen CLOCKED_BY clk PRESET_BY /reset; "pins
 OUTPUT oe CLOCKED_BY clk PRESET_BY /reset; "pins
 OUTPUT we CLOCKED_BY clk PRESET_BY /reset; "pins
 OUTPUT memcs CLOCKED_BY clk PRESET_BY /reset; "pins
 OUTPUT bready ENABLED_BY rdyen DEFAULT_TO 1; "pins
 OUTPUT hold CLOCKED_BY clk RESET_BY /reset; "pins
);
PHYSICAL NODE ready CLOCKED_BY clk PRESET_BY /reset; "node
PHYSICAL NODE cn0 CLOCKED_BY clk RESET_BY /reset; "node
PHYSICAL NODE cn1 CLOCKED_BY clk RESET_BY /reset; "node
PHYSICAL NODE rdyen CLOCKED_BY clk RESET_BY /reset; "node

bready = ready;

STATE_MACHINE wrcon
STATE_BITS [cint,hold,memcs,ready,xen,oe,we,cn0,cn1,rdyen];

STATE S0 [0010111000b]: "reset
 IF (/ads * /wr) * (addr[27..18] = 001h) THEN
 GOTO S0_1;
 ELSIF (/ads * wr) * (addr[27..18] = 001h) THEN
 GOTO S1;

 ELSIF (/ads * /wr) * (addr[27..18] = 000h) THEN
 GOTO S2;
 ELSIF (/ads * wr) * (addr[27..18] = 000h) THEN
 GOTO S4;

 ELSIF (/ads * (addr[27..20] = 01h) * scrst) THEN
 GOTO S7;

 ELSE GOTO S0;
 END IF;

STATE S0_1[1011111001b]: "internal read adding wait state
 GOTO S1;
STATE S1 [1010111001b]: "complete internal write or read
 IF (/blast) THEN
 GOTO S17;

RLP PCI Card Hardware Definition Document 521-H/W-065

B-3

 ELSIF (/wr) THEN GOTO S0_1;
 ELSE GOTO S1;
 END IF;

STATE S2 [0001101001b]: "mem_chain_read
 GOTO S3;
STATE S3 [0000101001b]:
 IF (/blast) THEN
 GOTO S17;
 ELSE GOTO S2;
 END IF;

STATE S4 [0001111011b]: "mem_chain_write
 GOTO S5;
STATE S5 [0001110001b]:
 GOTO S6;
STATE S6 [0000111001b]:
 IF (/blast) THEN
 GOTO S17;
 ELSE GOTO S4;
 END IF;

STATE S7 [0110111000b]: "chip_bus
 IF (ack) THEN
 GOTO S8;
 ELSE GOTO S7;
 END IF;

STATE S8 [0110011000b]: "chip_bus_en
 IF (/wr) THEN
 GOTO S9;
 ELSE GOTO S13;
 END IF;
STATE S9 [0111001001b]: "chip_bus_rd
 GOTO S10;
STATE S10 [0111001011b]: "chip_bus_rd
 GOTO S11;
STATE S11 [0111001111b]: "chip_bus_rd
 GOTO S12;
STATE S12 [0110001101b]: "chip_bus_rd
 IF (/blast) THEN
 GOTO S17;
 ELSE GOTO S9;
 END IF;

STATE S13 [0111011011b]: "chip_bus_wr
 GOTO S14;
STATE S14 [0111010011b]: "assert_we
 GOTO S15;
STATE S15 [0111010111b]: "assert_we
 GOTO S16;
STATE S16 [0110011111b]: "chip_bus_wr
 IF (/blast) THEN
 GOTO S17;
 ELSE GOTO S13;
 END IF;

STATE S17 [0011111011b]: "drive_ready_high
 GOTO S0;

END wrcon;
END WR_gen;

PROCEDURE registers

(INPUT wr,clk,reset; INPUT addrlo[4..2]; "pins
 INPUT cint; "node
 INPUT overflow; "node
 INPUT osmint; "pins
 INPUT osmhere; "pins
 INPUT scdone; "pins
 INPUT pplnff[2..0]; "pins
 INPUT pplnaf[2..0]; "pins
 INPUT pplnhf[2..0]; "pins
"INPUT pplnae[2..0]; "pins
 INPUT pplnfe[2..0]; "pins
 INPUT spfaf[12..0]; "pins
 INPUT spfae[12..0]; "pins
 INPUT spfe[12..0]; "pins

 BIPUT data[31..0] ENABLED_BY (cint*/wr); "pins

 OUTPUT clrovfl CLOCKED_BY clk PRESET_BY /reset DEFAULT_TO LAST_VALUE; "node
 OUTPUT control[3..2] CLOCKED_BY clk RESET_BY /reset DEFAULT_TO LAST_VALUE; "pins
 OUTPUT control1 CLOCKED_BY clk PRESET_BY /reset DEFAULT_TO LAST_VALUE; "pins
 OUTPUT control0 CLOCKED_BY clk RESET_BY /reset DEFAULT_TO LAST_VALUE; "pins
 OUTPUT rst[16..1] CLOCKED_BY clk RESET_BY /reset DEFAULT_TO LAST_VALUE; "pins
 OUTPUT rst0 CLOCKED_BY clk PRESET_BY /reset DEFAULT_TO LAST_VALUE; "pins
 OUTPUT load CLOCKED_BY clk RESET_BY /reset DEFAULT_TO LAST_VALUE; "pins
 OUTPUT clksel CLOCKED_BY clk RESET_BY /reset DEFAULT_TO LAST_VALUE; "node

RLP PCI Card Hardware Definition Document 521-H/W-065

B-4

 OUTPUT mask1[31..0] CLOCKED_BY clk RESET_BY /reset DEFAULT_TO LAST_VALUE; "node
 OUTPUT mask2[22..0] CLOCKED_BY clk RESET_BY /reset DEFAULT_TO LAST_VALUE; "node
 OUTPUT fflag1[30..0]; "node
 OUTPUT fflag2[23..0]; "node
);
PHYSICAL NODE flagcon CLOCKED_BY clk RESET_BY /reset DEFAULT_TO LAST_VALUE; "node

fflag1[0] = osmint;
fflag1[3..1] = pplnff[2..0];
fflag1[16..4] = spfaf[12..0];
fflag1[29..17] = spfae[12..0];
fflag1[30] = overflow;

fflag2[2..0] = pplnaf[2..0];
fflag2[5..3] = pplnhf[2..0];
fflag2[8..6] = pplnfe[2..0];
fflag2[21..9] = spfe[12..0];
fflag2[22] = scdone;
fflag2[23] = osmhere;

CASE [cint,wr,addrlo[4..2]]

 WHEN 11000b => clrovfl = data[0]; control0 = data[1]; "reg0_wr
 control1 = data[2]; control[3..2] = data[4..3];
 clksel = data[5]; load = data[6];
 rst0 = data[7]; rst[16..1] = data[23..8];

 flagcon = data[24];
 WHEN 11001b => mask1[31..0] = data[31..0]; "reg1_wr
 WHEN 11010b => mask2[22..0] = data[22..0]; "reg2_wr

END CASE;

CASE [flagcon,addrlo[4..2]]

 WHEN 0000b => data[0] = clrovfl; data[1] = control0; "reg0_rd
 data[2] = control1; data[4..3] = control[3..2];

data[5] = clksel; data[6] = load;
data[7] = rst0; data[23..8] = rst[16..1];
data[24] = flagcon; data[31..25] = 0000000b;

 WHEN 1000b => data[0] = clrovfl; data[1] = control0; "reg0_rd
 data[2] = control1; data[4..3] = control[3..2];

data[5] = clksel; data[6] = load;
data[7] = rst0; data[23..8] = rst[16..1];
data[24] = flagcon; data[31..25] = 0000000b;

 WHEN 0001b => data[31..0] = mask1[31..0]; "reg1_rd
 WHEN 1001b => data[31..0] = mask1[31..0]; "reg1_rd

 WHEN 0010b => data[22..0] = mask2[22..0]; data[31..23] = 000000000b; "reg2_rd
 WHEN 1010b => data[22..0] = mask2[22..0]; data[31..23] = 000000000b; "reg2_rd

 WHEN 0011b => data[30..0] = fflag1[30..0]; data[31] = 0b; "reg3_rd_f
 WHEN 1011b => data[16..0] = fflag1[16..0] + /mask1[16..0]; "reg3_rd_mf
 data[30..17] = fflag1[30..17] * mask1[30..17];
 data[31] = 0b;

 WHEN 0100b => data[23..0] = fflag2[23..0]; data[31..24] = 00000000b; "reg4_rd_f
 WHEN 1100b => data[5..0] = fflag2[5..0] + /mask2[5..0]; "reg4_rd_mf
 data[22..8] = fflag2[22..8] * mask2[22..8];
 data[23] = fflag2[23]; data[31..24] = 00000000b;
ELSE data[31..0] = 00000000h;
END CASE;

END registers;

PROCEDURE clk_mux

(INPUT intclk; "pins
 INPUT extclk; "pins
 INPUT clksel; "node
 OUTPUT refclkout; "pins
);

refclkout = (intclk * /clksel) + (extclk * clksel);

END clk_mux;

PROCEDURE over_flow

(INPUT ovfwrclk; "pins
 INPUT reset; "pins
 INPUT ovfwe; "pins
 INPUT ovfff; "node
 INPUT clrovfl; "node
 OUTPUT overflow CLOCKED_BY ovfwrclk RESET_BY /reset; "node
);

RLP PCI Card Hardware Definition Document 521-H/W-065

B-5

IF (clrovfl) THEN
 overflow = 0b;
ELSIF (/overflow * /ovfwe * /ovfff) THEN
 overflow = 1b;
ELSE
 overflow = overflow;
END IF;

END over_flow;

PROCEDURE interrupt_gen

(INPUT mask1[31..0]; "node
 INPUT mask2[22..0]; "node
 INPUT fflag1[30..0]; "node
 INPUT fflag2[23..0]; "node

 OUTPUT interrupt; "pins
"OUTPUT interrupt ENABLED_BY /intcon; "pins
);
PHYSICAL NODE intmask[10..0]; "node

"interrupt = 0b;

intmask[10] = mask2[22] * fflag2[22]
 + mask2[21] * fflag2[21]
 + mask2[20] * fflag2[20]
 + mask2[19] * fflag2[19];
intmask[9] = mask2[18] * fflag2[18]
 + mask2[17] * fflag2[17]
 + mask2[16] * fflag2[16]
 + mask2[15] * fflag2[15]
 + mask2[14] * fflag2[14];
intmask[8] = mask2[13] * fflag2[13]
 + mask2[12] * fflag2[12]
 + mask2[11] * fflag2[11]
 + mask2[10] * fflag2[10]
 + mask2[9] * fflag2[9];
intmask[7] = mask2[8] * fflag2[8]
 + mask2[7] * fflag2[7]
 + mask2[6] * fflag2[6]
 + mask2[5] * /fflag2[5]
 + mask2[4] * /fflag2[4];
intmask[6] = mask2[3] * /fflag2[3]
 + mask2[2] * /fflag2[2]
 + mask2[1] * /fflag2[1]
 + mask2[0] * /fflag2[0]
 + mask1[30] * fflag1[30];
intmask[5] = mask1[29] * fflag1[29]
 + mask1[28] * fflag1[28]
 + mask1[27] * fflag1[27]
 + mask1[26] * fflag1[26]
 + mask1[25] * fflag1[25];
intmask[4] = mask1[24] * fflag1[24]
 + mask1[23] * fflag1[23]
 + mask1[22] * fflag1[22]
 + mask1[21] * fflag1[21]
 + mask1[20] * fflag1[20];
intmask[3] = mask1[19] * fflag1[19]
 + mask1[18] * fflag1[18]
 + mask1[17] * fflag1[17]
 + mask1[16] * /fflag1[16]
 + mask1[15] * /fflag1[15];
intmask[2] = mask1[14] * /fflag1[14]
 + mask1[13] * /fflag1[13]
 + mask1[12] * /fflag1[12]
 + mask1[11] * /fflag1[11]
 + mask1[10] * /fflag1[10];
intmask[1] = mask1[9] * /fflag1[9]
 + mask1[8] * /fflag1[8]
 + mask1[7] * /fflag1[7]
 + mask1[6] * /fflag1[6]
 + mask1[5] * /fflag1[5];
intmask[0] = mask1[4] * /fflag1[4]
 + mask1[3] * /fflag1[3]
 + mask1[2] * /fflag1[2]
 + mask1[1] * /fflag1[1]
 + mask1[0] * /fflag1[0] * fflag2[23];

IF (((intmask[10..0]) = 000h) OR (mask1[31]=0b)) THEN
 interrupt = 1b;
ELSE interrupt = 0b;
END IF;

END interrupt_gen;

OUTPUT spfaf0t3, spfaf4t11; "pins

INPUT addr[27..18]; "pins
INPUT addrlo[4..2]; "pins

RLP PCI Card Hardware Definition Document 521-H/W-065

B-6

INPUT clk; "pins
INPUT ads; "pins
INPUT blast; "pins
INPUT wr; "pins
INPUT ack; "pins
INPUT reset;

INPUT pplnff[2..0]; "pins
INPUT pplnaf[2..0]; "pins
INPUT pplnhf[2..0]; "pins
"INPUT pplnae[2..0]; "pins
INPUT pplnfe[2..0]; "pins
INPUT spfaf[12..0]; "pins
INPUT spfae[12..0]; "pins
INPUT spfe[12..0]; "pins
INPUT intclk; "pins
INPUT extclk; "pins

INPUT ovfwrclk; "pins
INPUT ovfwe; "pins
INPUT ovfff; "pins

INPUT osmint; "pins
INPUT osmhere; "pins
INPUT scdone; "pins

BIPUT data[31..0]; "pins

OUTPUT xen; "pins
OUTPUT oe; "pins
OUTPUT we; "pins
OUTPUT memcs; "pins
OUTPUT bready; "pins
OUTPUT hold; "pins

OUTPUT control[3..2]; "pins
OUTPUT control1; "pins
OUTPUT control0; "pins
OUTPUT rst[16..1]; "pins
OUTPUT rst0; "pins
OUTPUT load; "pins

OUTPUT refclkout; "pins

OUTPUT interrupt; "pins

NODE overflow;
NODE cint;

NODE clksel;
NODE clrovfl;
NODE mask1[31..0];
NODE mask2[22..0];
NODE fflag1[30..0];
NODE fflag2[23..0];

SP_hold (spfaf[11..0], spfaf0t3, spfaf4t11);

WR_gen (addr[27..18], clk, ads, blast, wr, ack, reset, rst[10],
cint, xen, oe, we, memcs, bready, hold);

registers (wr, clk, reset, addrlo[4..2], cint, overflow, osmint, osmhere,
scdone, pplnff[2..0], pplnaf[2..0], pplnhf[2..0],
pplnfe[2..0], spfaf[12..0], spfae[12..0], spfe[12..0],
data[31..0], clrovfl, control[3..2], control1, control0,
rst[16..1], rst0, load, clksel,
mask1[31..0], mask2[22..0], fflag1[30..0], fflag2[23..0]);

clk_mux (intclk, extclk, clksel, refclkout);

over_flow (ovfwrclk, reset, ovfwe, ovfff, clrovfl, overflow);

interrupt_gen (mask1[31..0], mask2[22..0], fflag1[30..0], fflag2[23..0],
interrupt);

RLP PCI Card Hardware Definition Document 521-H/W-065

B-7

B.2 DMA I NTERFACE P ROGRAM L ISTING

The DMA Interface development directories consist of dmai and dmai_1. This is the source file,
dmai/dmai.src.

#TITLE 'DMA Interface';
#ENGINEER 'Andy Wolf';
#REVISION '-';
#PROJECT 'NextGen Return Link Processor Card';
#COMMENT '';

" REVISION HISTORY
" 8/7/96 Created rev -.
"

PROCEDURE SP_fifo

(INPUT fclk, tripins, reset, spemptyn[12..0]; "pins
 INPUT spfifo[3..0], oe, rd; "nodes
 OUTPUT spempty; "nodes
 OUTPUT oen[12..0] ENABLED_BY /tripins CLOCKED_BY fclk PRESET_BY reset DEFAULT_TO 01FFFh; "pins
 OUTPUT rdn[12..0] ENABLED_BY /tripins CLOCKED_BY fclk PRESET_BY reset DEFAULT_TO 01FFFh; "pins
);

CASE spfifo[3..0]
 WHEN 0 => oen[0] = /oe; rdn[0] = /rd; spempty = /spemptyn[0];
 WHEN 1 => oen[1] = /oe; rdn[1] = /rd; spempty = /spemptyn[1];
 WHEN 2 => oen[2] = /oe; rdn[2] = /rd; spempty = /spemptyn[2];
 WHEN 3 => oen[3] = /oe; rdn[3] = /rd; spempty = /spemptyn[3];
 WHEN 4 => oen[4] = /oe; rdn[4] = /rd; spempty = /spemptyn[4];
 WHEN 5 => oen[5] = /oe; rdn[5] = /rd; spempty = /spemptyn[5];
 WHEN 6 => oen[6] = /oe; rdn[6] = /rd; spempty = /spemptyn[6];
 WHEN 7 => oen[7] = /oe; rdn[7] = /rd; spempty = /spemptyn[7];
 WHEN 8 => oen[8] = /oe; rdn[8] = /rd; spempty = /spemptyn[8];
 WHEN 9 => oen[9] = /oe; rdn[9] = /rd; spempty = /spemptyn[9];
 WHEN 10 => oen[10] = /oe; rdn[10] = /rd; spempty = /spemptyn[10];
 WHEN 11 => oen[11] = /oe; rdn[11] = /rd; spempty = /spemptyn[11];
 WHEN 12 => oen[12] = /oe; rdn[12] = /rd; spempty = /spemptyn[12];
END CASE;

END SP_fifo;

PROCEDURE dma_control

"(INPUT fclk, reset; "pins
(INPUT fclk, reset,tripins; "pins
 INPUT cnta[16..0], cntb[16..0], dmfull; "nodes
 OUTPUT go, allin CLOCKED_BY fclk RESET_BY reset; "nodes
 OUTPUT cntenaba, cntenabb CLOCKED_BY fclk RESET_BY reset; "nodes
 OUTPUT channela, channelb CLOCKED_BY fclk RESET_BY reset; "nodes
);

VIRTUAL NODE cnteq0a, cnteq0b, cnteq1a, cnteq1b;
PHYSICAL NODE qcnteq0a, qcnteq0b CLOCKED_BY fclk PRESET_BY reset;
PHYSICAL NODE goa, gob CLOCKED_BY fclk RESET_BY reset;

"detect cnters equal 1 or 0
IF (cnta = 1) THEN cnteq1a = 1; else cnteq1a = 0; END IF;
IF (cnta = 0) THEN cnteq0a = 1; else cnteq0a = 0; END IF;
IF (cntb = 1) THEN cnteq1b = 1; else cnteq1b = 0; END IF;
IF (cntb = 0) THEN cnteq0b = 1; else cnteq0b = 0; END IF;

"select which DMA channel is active
qcnteq0a.d = cnteq0a;
qcnteq0b.d = cnteq0b;
"channela.d = /qcnteq0a * (qcnteq0b + /channelb);
"channelb.d = /qcnteq0b * (qcnteq0a + /channela);
channela.d = /qcnteq0a * (qcnteq0b + /channelb) * /tripins;
channelb.d = /qcnteq0b * (qcnteq0a + /channela) * /tripins;
allin.d = qcnteq0a * qcnteq0b;

"control signals enable cnters and start other actions
cntenaba.d = channela * /cnteq0a * /(cnteq1a * cntenaba) * /dmfull;
goa.d = channela * /cnteq0a * /(cnteq1a * cntenaba);

cntenabb.d = channelb * /cnteq0b * /(cnteq1b * cntenabb) * /dmfull;

RLP PCI Card Hardware Definition Document 521-H/W-065

B-8

gob.d = channelb * /cnteq0b * /(cnteq1b * cntenabb);

IF channelb THEN go.d = gob;
ELSE go.d = goa;
END IF;

END dma_control;

PROCEDURE registers

(INPUT fclk, reset, fifodata[8..0]; "pins
 INPUT grabdata, badread, dataenab; "nodes
 INPUT cntaspace, cntbspace,garbspacea,garbspaceb; "nodes
 INPUT setupspace, SPreadspace; "nodes
 INPUT cntenaba, cntenabb, channela, channelb, load, loadc; "nodes
 OUTPUT spfifo[3..0]; "nodes
 OUTPUT byteorder CLOCKED_BY fclk RESET_BY reset DEFAULT_TO LAST_VALUE;
 OUTPUT dmrstn CLOCKED_BY fclk PRESET_BY reset DEFAULT_TO LAST_VALUE;
 OUTPUT cnta[16..0],cntb[16..0] CLOCKED_BY fclk RESET_BY reset DEFAULT_TO LAST_VALUE;
 BIPUT data[31..0] ENABLED_BY dataenab CLOCKED_BY fclk RESET_BY reset DEFAULT_TO LAST_VALUE;
);

PHYSICAL NODE spfifoa [3..0] CLOCKED_BY fclk RESET_BY reset DEFAULT_TO LAST_VALUE;
PHYSICAL NODE spfifob [3..0] CLOCKED_BY fclk RESET_BY reset DEFAULT_TO LAST_VALUE;
PHYSICAL NODE garbagea [16..0] CLOCKED_BY fclk RESET_BY reset DEFAULT_TO LAST_VALUE;
PHYSICAL NODE garbageb [16..0] CLOCKED_BY fclk RESET_BY reset DEFAULT_TO LAST_VALUE;
VIRTUAL NODE data_comb[20..0] DEFAULT_TO 0;
PHYSICAL NODE loada, loadb CLOCKED_BY fclk RESET_BY reset;
PHYSICAL NODE grabdata1, grabdata2, grabdata3 CLOCKED_BY fclk RESET_BY reset;
PHYSICAL NODE garbcnta, garbcntb CLOCKED_BY fclk RESET_BY reset;

"Control Registers

loada.d = loadc * cntaspace;
loadb.d = loadc * cntbspace;

IF (loada) THEN cnta=data[16..0]; spfifoa = data[20..17];
ELSIF (cntenaba) THEN cnta = cnta .-. 1;
END IF;

IF (loadb) THEN cntb=data[16..0]; spfifob = data[20..17];
ELSIF (cntenabb) THEN cntb = cntb .-. 1;
END IF;

IF channelb THEN spfifo = spfifob;
ELSE spfifo = spfifoa;
END IF;

"Garbage Registers

garbcnta.d = badread * /garbcntb * (channela + garbcnta);
garbcntb.d = badread * /garbcnta * (channelb + garbcntb);

IF loada THEN garbagea = 0;
ELSIF garbcnta THEN garbagea = garbagea .+. 1;
END IF;

IF loadb THEN garbageb = 0;
ELSIF garbcntb THEN garbageb = garbageb .+. 1;
END IF;

"Setup Register

"IF (load * setupspace) THEN byteorder.d = data[0]; dmrstn.d = data[1];
IF (load * setupspace) THEN byteorder = data[0]; dmrstn = data[1];
END IF;

"Output Data Multiplexor

IF cntaspace THEN data_comb[16..0]= cnta; data_comb[20..17]=spfifoa;
ELSIF cntbspace THEN data_comb[16..0]= cntb; data_comb[20..17]=spfifob;
ELSIF garbspacea THEN data_comb[16..0]= garbagea;
ELSIF garbspaceb THEN data_comb[16..0]= garbageb;
ELSIF setupspace THEN data_comb[0] = byteorder; data_comb[1] = dmrstn;
ELSIF SPreadspace THEN data_comb[8..0]= fifodata;
END IF;

"Grab data into output register synchronously with Fclk
grabdata1 = grabdata; "delay needed for SPread to get data from FIFOs
grabdata2 = grabdata1;
grabdata3 = grabdata2;
data[31..21] = 0;
IF (grabdata3) THEN data[20..0] = data_comb; END IF;

RLP PCI Card Hardware Definition Document 521-H/W-065

B-9

END registers;

PROCEDURE memory_map

(INPUT addr[20..17],sel[4..2], lclk,reset;
 OUTPUT dataspace DEFAULT_TO 0;
 OUTPUT dmaspace,SPreadspace,dmwritespace DEFAULT_TO 0;
 OUTPUT cntaspace,cntbspace,garbspacea,garbspaceb,setupspace DEFAULT_TO 0;
);

VIRTUAL NODE regspace DEFAULT_TO 0;
VIRTUAL NODE SPspace DEFAULT_TO 0;
VIRTUAL NODE DWspace DEFAULT_TO 0;

IF (addr[20..17] = 4) THEN dmaspace = 1;
ELSIF (addr[20..17] = 5) THEN regspace = 1;
ELSIF (addr[20..17] = 6) THEN SPspace = 1;
ELSIF (addr[20..17] = 7) THEN DWspace = 1;
END IF;

IF (regspace AND (sel=0)) THEN cntaspace = 1;
ELSIF (regspace AND (sel=1)) THEN cntbspace = 1;
ELSIF (regspace AND (sel=2)) THEN garbspacea = 1;
ELSIF (regspace AND (sel=3)) THEN garbspaceb = 1;
ELSIF (regspace AND (sel=4)) THEN setupspace = 1;
END IF;

SPreadspace = SPspace; "SPspace is virtual node, SPreadspace is physical node
dmwritespace = DWspace;
dataspace=regspace+SPspace+DWspace;

END memory_map;

PROCEDURE control_logic

(INPUT fclk,reset,dmafn; "pins
 INPUT go,spempty,wrcnteq3, SPreadspace, grabdata; "nodes
 OUTPUT rd, oe, we CLOCKED_BY fclk RESET_BY reset; "nodes
 OUTPUT wrcntclrn,badread, dmfull CLOCKED_BY fclk RESET_BY reset; "nodes
);

PHYSICAL NODE full, full1, full2 CLOCKED_BY fclk RESET_BY reset;
PHYSICAL NODE goq,goqq CLOCKED_BY fclk RESET_BY reset;
VIRTUAL NODE SPread;
PHYSICAL NODE SPreadq CLOCKED_BY fclk RESET_BY reset;

rd = go * /spempty * /badread * /full1 + SPread;
oe = go + goq + SPread + SPreadq;
we = goq * /full2;
wrcntclrn.d = go * goq * /full2;
badread.d = goqq * (spempty + badread);
dmfull.d = /dmafn * (wrcnteq3 + dmfull);
full.d = dmfull;
full1.d = full;
full2.d = full1;
goq.d = go;
goqq.d = goq;
SPread = SPreadspace * grabdata;
SPreadq.d = SPread;

END control_logic;

PROCEDURE bus_access

"(INPUT fclk,tripins,reset,lclk,adsn,write,blastn,dmaen; "pins
(INPUT fclk,reset,lclk,adsn,write,blastn,dmaen; "pins
 INPUT dataspace, dmaspace, allin, dmempty; "nodes
 OUTPUT dataenab; "output enables
 OUTPUT regaccess CLOCKED_BY lclk RESET_BY reset; "nodes
 OUTPUT load CLOCKED_BY fclk RESET_BY reset; "nodes
 OUTPUT loadc; "nodes
 OUTPUT grabdata; "nodes
"OUTPUT grabdata CLOCKED_BY fclk RESET_BY reset; "nodes
"OUTPUT dmrdn ENABLED_BY /tripins; "pins
"OUTPUT dmoen ENABLED_BY /tripins CLOCKED_BY lclk PRESET_BY reset DEFAULT_TO 1;
 OUTPUT dmrdn; "pins
 OUTPUT dmoen CLOCKED_BY lclk PRESET_BY reset DEFAULT_TO 1;
 OUTPUT readyn ENABLED_BY readyenab;
);

RLP PCI Card Hardware Definition Document 521-H/W-065

B-10

"PHYSICAL NODE fcnt[2..0] CLOCKED_BY fclk RESET_BY reset DEFAULT_TO LAST_VALUE;
PHYSICAL NODE fcnt[1..0] CLOCKED_BY fclk RESET_BY reset DEFAULT_TO LAST_VALUE;
PHYSICAL NODE regaccessf CLOCKED_BY fclk RESET_BY reset;
PHYSICAL NODE fdone CLOCKED_BY fclk RESET_BY reset DEFAULT_TO LAST_VALUE;
PHYSICAL NODE access, done CLOCKED_BY lclk RESET_BY reset;
"VIRTUAL NODE fcntrst;

PHYSICAL NODE regaccessl CLOCKED_BY lclk RESET_BY reset;
PHYSICAL NODE ready CLOCKED_BY lclk RESET_BY reset;
PHYSICAL NODE rdff CLOCKED_BY lclk RESET_BY reset;
PHYSICAL NODE readyenab CLOCKED_BY lclk RESET_BY reset; "output enable
VIRTUAL NODE regready;
VIRTUAL NODE dmready,dmaaccess,endaccess,enddmard;

"register access

regaccess.d = /adsn*dataspace + blastn*ready*dataspace + regaccess*/done;
regaccessf.d = regaccess;
regaccessl.d = regaccess;
"done.d = maxcount;
"done.d = maxcount * /fcntrst;
done.d = fdone * regaccess;
"fcntrst = /regaccess + /regaccessf;
regready = done * regaccess;
dataenab = /write * regaccessl;

IF /regaccessf THEN fcnt = 0;
ELSIF /fdone THEN fcnt = fcnt .+. 1; END IF;
"ELSIF /maxcount THEN fcnt = fcnt .+. 1; END IF;

"IF (fcnt = 5) THEN maxcount = 1; ELSE maxcount = 0; END IF;
IF ((fcnt >= 2) AND regaccessf) THEN fdone = 1; ELSE fdone = 0; END IF;
IF (write AND (fcnt = 1)) THEN loadc = 1; ELSE loadc = 0; END IF;
IF (/write AND (fcnt = 1)) THEN grabdata = 1; ELSE grabdata = 0; END IF;
load.d = loadc; "load is clocked output, loadc is combinatorial output

"dma access

enddmard = /blastn * ready;
endaccess = /blastn * /readyn;
access.d = /adsn * dmaspace + access * /endaccess;
dmaaccess = access * /write;
dmoen.d = /(dmaaccess * /endaccess);
"rdff.d = dmaaccess * /endaccess * (allin + dmaen + rdff);
rdff.d = dmaaccess * /endaccess * /dmempty * (allin + dmaen + rdff);
"dmrdn = /(rdff * /endaccess);
dmrdn = /(rdff * /dmempty * /enddmard);
"dmready = rdff * /endaccess;
dmready = rdff * /dmempty * /enddmard;

"common to both dma or register access
ready.d = regready + dmready;
"readyenab.d = ((regready + dmready) + ready) * /tripins;
readyenab.d = ((regready + dmready) + ready);
readyn = /ready;
END bus_access;

PROCEDURE DMAI_fifo
(
 INPUT fclk, tripins, reset, data[31..0]; "pins
 INPUT wrcntclrn, we, dmwritespace, load, write, oe, go, regaccess, byteorder; "nodes
 OUTPUT wrcnteq3; "nodes
 OUTPUT fifodata[8..0] ENABLED_BY fifodataenab; "pins
"OUTPUT wen[3..0] ENABLED_BY /tripins CLOCKED_BY fclk PRESET_BY reset DEFAULT_TO 0Fh;
 OUTPUT wen[3..0] CLOCKED_BY fclk PRESET_BY reset DEFAULT_TO 0Fh;
);

PHYSICAL NODE wrcnt[1..0] CLOCKED_BY fclk RESET_BY reset;
VIRTUAL NODE dmfifowrite;
PHYSICAL NODE fifodataenab; "output enable
VIRTUAL NODE nocontention;

nocontention = /oe * /go;
"fifodataenab = dmwritespace * write * access * nocontention * /tripins;
fifodataenab = dmwritespace * write * regaccess * nocontention * /tripins;
fifodata[8..0] = data[8..0];

dmfifowrite = load * dmwritespace ;

IF wrcntclrn THEN wrcnt = wrcnt .+. 1; ELSE wrcnt = 0; END IF;
IF (wrcnt=3) THEN wrcnteq3 = 1; ELSE wrcnteq3 = 0; END IF;

IF dmfifowrite THEN wen[3..0] = 0;
ELSIF byteorder THEN CASE wrcnt
 WHEN 0 => wen[3] = /we;

RLP PCI Card Hardware Definition Document 521-H/W-065

B-11

 WHEN 1 => wen[2] = /we;
 WHEN 2 => wen[1] = /we;
 WHEN 3 => wen[0] = /we;
 END CASE;
ELSE CASE wrcnt
 WHEN 0 => wen[0] = /we;
 WHEN 1 => wen[1] = /we;
 WHEN 2 => wen[2] = /we;
 WHEN 3 => wen[3] = /we;
 END CASE;
END IF;

END DMAI_fifo;

INPUT lclk; "clock for i960 bus - typically 33MHz
INPUT fclk; "FIFO clock - typically 56-66MHz

INPUT addr[20..17],sel[4..2]; "i960 bus
INPUT adsn,blastn; "active low i960 bus signal
INPUT write; "1 = write, 0 = read i960 bus signal
"INPUT hold; "1 = PBC requests bus

INPUT spemptyn[12..0]; "active low empty flags from SP FIFOs
INPUT dmhalfn, dmfulln ; "active low flags from DMAI FIFO
INPUT dmaen,dmafn; "active low programmable flags from DMAI FIFO
INPUT dmen0, dmen3; "active low empty flags from DMAI FIFOs

INPUT tripins, resetn; "set DMAI mode of operation

"i960 bus bidirectional signals
BIPUT data[31..0],readyn;
BIPUT btermn ENABLED_BY 0; "i960 bus burst termination - unused

"FIFO data bus bidirectional signals
BIPUT fifodata[8..0];

"Bus arbitration
"BIPUT holda CLOCKED_BY lclk RESET_BY reset ENABLED_BY /tripins; "1 = PBC is granted access to bus

"active low SP FIFO enab
OUTPUT oen[12..0], rdn[12..0];

"active low DMAIFIFO write
OUTPUT wen[3..0];

"active low DMAIFIFO read
OUTPUT dmoen, dmrdn;
OUTPUT dmrstn; "active low reset for DMAI FIFO

VIRTUAL NODE cntenaba,cntenabb; "dma control FIFO nodes
VIRTUAL NODE channela,channelb; "dma control nodes
VIRTUAL NODE cnta[16..0], cntb[16..0]; "register bits
VIRTUAL NODE byteorder; "register bits
VIRTUAL NODE wrcntclrn,we,wrcnteq3; "DMAI FIFO nodes
VIRTUAL NODE oe,rd; "SP FIFO nodes
PHYSICAL NODE spfifo[3..0]; "SP FIFO nodes
VIRTUAL NODE spempty; "SP FIFO nodes
VIRTUAL NODE load, loadc, regaccess; "register access nodes
VIRTUAL NODE dmfull, badread, go; "control sigs
VIRTUAL NODE grabdata,allin; "control sigs
PHYSICAL NODE dataenab; "output enable sigs
VIRTUAL NODE dmaspace, dataspace; "memory map
PHYSICAL NODE dmwritespace; "memory map
PHYSICAL NODE cntaspace,cntbspace; "memory map
PHYSICAL NODE garbspacea,garbspaceb; "memory map
PHYSICAL NODE setupspace,SPreadspace; "memory map
VIRTUAL NODE reset; "global signals
VIRTUAL NODE dmempty; "to bus access

reset = /resetn;
"holda = hold;
btermn = 0;
dmempty = /byteorder * /dmen3 + byteorder * /dmen0;

SP_fifo (fclk, tripins, reset, spemptyn[12..0],spfifo[3..0], oe, rd,
 spempty, oen[12..0], rdn[12..0]);

"dma_control (fclk,reset,cnta[16..0],cntb[16..0],dmfull,
dma_control (fclk,reset,tripins,cnta[16..0],cntb[16..0],dmfull,
 go,allin,cntenaba,cntenabb,channela,channelb);

RLP PCI Card Hardware Definition Document 521-H/W-065

B-12

registers (fclk,reset,fifodata[8..0],grabdata,badread,dataenab,
 cntaspace, cntbspace,garbspacea,garbspaceb,setupspace,SPreadspace,
 cntenaba, cntenabb, channela, channelb, load, loadc,
 spfifo[3..0],byteorder,dmrstn,cnta[16..0],cntb[16..0],data[31..0]);

memory_map (addr[20..17],sel[4..2], lclk, reset,
 dataspace,dmaspace,SPreadspace,dmwritespace,
 cntaspace,cntbspace,garbspacea,garbspaceb,setupspace);

control_logic (fclk,reset,dmafn,go,spempty,wrcnteq3,SPreadspace,grabdata,
 rd, oe, we, wrcntclrn,badread, dmfull);

"bus_access (fclk,tripins,reset,lclk,adsn,write,blastn,
bus_access (fclk,reset,lclk,adsn,write,blastn,
 dmaen,dataspace,dmaspace, allin, dmempty,
 dataenab, regaccess, load, loadc, grabdata, dmrdn, dmoen, readyn);

DMAI_fifo (fclk,tripins,reset,data[31..0],wrcntclrn,we,dmwritespace,load,
write,oe,go,regaccess,byteorder,wrcnteq3,fifodata[8..0], wen[3..0]);

B.3 S TATUS C OLLECTOR P ROGRAM L ISTING

The Status Collector development directories consist of stcol and stcol_1. This is the source file,
stcol/stcol.src.

#TITLE 'Status collect chip for Return Link Processor card';
#ENGINEER 'Fred Peng';
#REVISION '-';
#COMMENT 'This design collects the status from several devices'

 'including PIFS chip, RSEC chip, SP chip, A/D etc.'
 'and then store them in the 9 bit Synchronous FIFO'
 'eod is the mark bit to indicate the last byte of'
 'every status piece';

INPUT we, hold, aff,clk, clr;
INPUT adcd[8];
BIPUT addr[18] ENABLED_BY out_ena;
BIPUT data[32] ENABLED_BY out_en;
BIPUT rdb CLOCKED_BY clk PRESET_BY /clr ENABLED_BY out_ena DEFAULT_TO 1b;
OUTPUT csb[7];
PHYSICAL NODE div[4] CLOCKED_BY clk RESET_BY /clr;
PHYSICAL NODE adcreg[16] CLOCKED_BY adcck RESET_BY /clr DEFAULT_TO LAST_VALUE;
OUTPUT adcck;
OUTPUT adccs CLOCKED_BY adcck PRESET_BY /clr;
OUTPUT adca[2] CLOCKED_BY adcck RESET_BY /clr;
OUTPUT wenb;
OUTPUT sc_done CLOCKED_BY clk RESET_BY /clr DEFAULT_TO 0b;
OUTPUT ack CLOCKED_BY clk;
NODE sb[9] CLOCKED_BY clk;
NODE xb1 CLOCKED_BY clk;
NODE cnt5_en, cnt3_en CLOCKED_BY clk RESET_BY /clr DEFAULT_TO 0b;
NODE cnt2_en, cnt3a_en CLOCKED_BY clk RESET_BY /clr DEFAULT_TO 0b;
NODE clr_addr;
NODE cnt5[3] CLOCKED_BY clk;
NODE cnt3[3] CLOCKED_BY clk;
NODE cnt2[2] CLOCKED_BY clk;
NODE cnt3a[3] CLOCKED_BY clk;
NODE cnt1[1] CLOCKED_BY clk;
NODE addro[16] CLOCKED_BY clk RESET_BY /clr;
NODE latch_dat[32] CLOCKED_BY clk RESET_BY /clr;
NODE ctrlreg[27] CLOCKED_BY clk RESET_BY /clr;
NODE dat_sel CLOCKED_BY clk RESET_BY /clr DEFAULT_TO 0b;
NODE out_sel[2] CLOCKED_BY clk RESET_BY /clr DEFAULT_TO 00b;
NODE muxout[32];
NODE fr_addr[14];
NODE pk_addr[14];
NODE out_en CLOCKED_BY clk RESET_BY /clr DEFAULT_TO 0b;
NODE addr_en DEFAULT_TO 0b;
NODE cs[5] CLOCKED_BY clk PRESET_BY /clr DEFAULT_TO 11111b;
"PHYSICAL NODE clr_addr1,clr_addr2,eod1,eod2 DEFAULT_TO 0b;
PHYSICAL NODE clr_addr1 DEFAULT_TO 0b;
PHYSICAL NODE clr_addr3 CLOCKED_BY clk RESET_BY /clr DEFAULT_TO 0b;
PHYSICAL NODE cs_a[7] DEFAULT_TO 1111111b;
PHYSICAL NODE out_ena;
PHYSICAL NODE cs_sc DEFAULT_TO 1b;
PHYSICAL NODE cs_fifo DEFAULT_TO 1b;
PHYSICAL NODE ack1 CLOCKED_BY clk RESET_BY /clr DEFAULT_TO 0b;
"PHYSICAL NODE frm_on;
"PHYSICAL NODE pkt_on;
PHYSICAL NODE fr_eq CLOCKED_BY clk;
PHYSICAL NODE pk_eq CLOCKED_BY clk;
PHYSICAL NODE clr_cnt2,clr_cnt3,clr_cnt5 DEFAULT_TO 0b;
PHYSICAL NODE clr_cnt3a CLOCKED_BY clk RESET_BY /clr DEFAULT_TO 0b;
PHYSICAL NODE wen CLOCKED_BY clk RESET_BY /clr DEFAULT_TO 0b;
PHYSICAL NODE eod CLOCKED_BY clk RESET_BY /clr DEFAULT_TO 0b;
PHYSICAL NODE fsdone,rsdone,spdone DEFAULT_TO 0b;

RLP PCI Card Hardware Definition Document 521-H/W-065

B-13

MACRO gen_cs0
{
 CASE cnt5
 WHEN 0..1 =>
 cs[0] = 0b;
 ELSE
 cs[0] = 1b;
 END CASE;
}
MACRO gen_cs(y)
{
 CASE cnt3
 WHEN 0..1 =>
 cs[y] = 0b;
 ELSE
 cs[y] = 1b;
 END CASE;
}
MACRO gen_cs3
{
 CASE cnt2
 WHEN 0..1 =>
 cs[3] = 0b;
 ELSE
 cs[3] = 1b;
 END CASE;
}

MACRO gen_cs4
{
 CASE cnt5
 WHEN 0..1 =>
 cs[4] = 0b;
 ELSE
 cs[4] = 1b;
 END CASE;
}

" MACRO gen_cs5
" {
" CASE cnt2
" WHEN 0..1 =>
" cs[5] = 0b;
" ELSE
" cs[5] = 1b;
" END CASE;
" }

MACRO out_1byte
{
 CASE cnt2
 WHEN 0..1 => rdb = 0b;
 WHEN 2 => [out_sel,wen,out_en,addr_en] = 00111b;
 END CASE;
}

MACRO out_2byte
{
 CASE cnt3
 WHEN 0..1 => rdb = 0b;
 WHEN 2 => [out_sel,wen,out_en] = 0111b;
 WHEN 3 => [out_sel,wen,out_en,addr_en] = 00111b;
 END CASE;
}

MACRO out_4byte
{
 CASE cnt5
 WHEN 0..1 => rdb = 0b;
 WHEN 2 => [out_sel,wen,out_en] = 1111b;
 WHEN 3 => [out_sel,wen,out_en] = 1011b;
 WHEN 4 => [out_sel,wen,out_en] = 0111b;
 WHEN 5 => [out_sel,wen,out_en,addr_en] = 00111b;
 END CASE;
}

MACRO ctrlreg_out
{
 CASE cnt3a
 WHEN 000b => out_sel = 11b;
 WHEN 001b => out_sel = 10b;
 WHEN 010b => out_sel = 01b;
 WHEN 011b => out_sel = 00b;
 WHEN 100b => out_sel = 11b;addr_en = 1b;
 WHEN 101b => out_sel = 10b;
 WHEN 110b => out_sel = 01b;
 WHEN 111b => out_sel = 00b;
 END CASE;
}

" 32 bit input data latch"

RLP PCI Card Hardware Definition Document 521-H/W-065

B-14

 IF (rdb = 0b) THEN
 latch_dat[31..0] = data[31..0];
 ELSE

latch_dat[31..0] = latch_dat[31..0];
 END IF;

" 32bit wide 2 to 1 mux
" when collecting status on ctrlreg and adcreg, data[8] will
" not represent eod; instead it will be ctrlreg[8] or adcreg[8]

 IF dat_sel THEN
 IF (addr[0] = 0b) THEN
 muxout[26..0] = ctrlreg[26..0];

muxout[31..27] = 00000b;
data[8] = ctrlreg[8];

 ELSE
 muxout[15..0] = adcreg[15..0];

muxout[31..16] = 0000000000000000b;
data[8] = adcreg[8];

 END IF;
 ELSE

muxout[31..0] = latch_dat[31..0];
data[8] = eod;

 END IF;

" Byte-wide 4 to 1 Mux data output"

 CASE out_sel
 WHEN 00b => data[7..0] = muxout[7..0];
 WHEN 01b => data[7..0] = muxout[15..8];
 WHEN 10b => data[7..0] = muxout[23..16];
 WHEN 11b => data[7..0] = muxout[31..24];
 END CASE;

" CASE sb
" WHEN 0 => sc_done = 1b;
" WHEN 256..262 => ack1 = 1b;
" END CASE;

 IF sb = 0 THEN sc_done = 1b; ELSE sc_done = 0b; END IF;
 ack1 = sb[8];

" Muxout chip selects for bus access or status collect

 IF (ack) THEN
 csb[6..0] = cs_a[6..0];
 wenb = /cnt1;
 out_ena = 0b;
 ELSE
 csb[4..0] = cs[4..0];
 csb[6..5] = 11b;
 wenb = /wen;
 out_ena = 1b;
 END IF;

" Check if need to collect frame status

"IF (ctrlreg[10..3] <> 0) THEN
" frm_on = 1b;
" ELSE
" frm_on = 0b;
"END IF;

" Check if need to collect packet status

"IF (ctrlreg[24..11] <> 0) THEN
" pkt_on = 1b;
" ELSE
" pkt_on = 0b;
"END IF;

" Check if finish frame status collect

"IF ((addro[11..0] = fr_addr[11..0]) AND (addr_en)) THEN
IF (addro[11..0] = fr_addr[11..0]) THEN

fr_eq = 1b;
 ELSE

fr_eq = 0b;
END IF;

" Check if finish packet status collect

"IF ((addro[13..0] = pk_addr[13..0]) AND (addr_en)) THEN
IF (addro[13..0] = pk_addr[13..0]) THEN

pk_eq = 0b;
 ELSE

pk_eq = 1b;
END IF;

IF (addro[4..0] = 11111b) THEN
 fsdone = 1b;

RLP PCI Card Hardware Definition Document 521-H/W-065

B-15

ELSE
 fsdone = 0b;
END IF;

IF (addro[5..0] = 100111b) THEN
 rsdone = 1b;
ELSE
 rsdone = 0b;
END IF;

IF (addro[6..0] = 1101111b) THEN
 spdone = 1b;
ELSE
 spdone = 0b;
END IF;

" Read the status then write to the FIFO
 IF ((sb[8..0] = 000000000b) AND (/cs_sc) AND (/rdb)) THEN
 dat_sel=1b;
 out_en=1b;

ELSIF sb[8..0] = 000000110b THEN
[cnt3a_en,dat_sel,out_en,wen] = 1111b;
ctrlreg_out;

 ELSIF sb[8..0] = 000001100b THEN

cnt5_en = 1b;
gen_cs0; "Generate chip select and read for the PIFS

 out_4byte; "Output 4 byte of PIFS status to FIFO

 ELSIF sb[8..0] = 000011000b THEN
cnt3_en = 1b;
gen_cs(1); "Generate chip select and read for the RSEC"

 out_2byte; "Output 2 byte of RSEC status to FIFO"

 ELSIF sb[8..0] = 000110000b THEN
cnt3_en = 1b;
gen_cs(2); "Generate chip select and read for the SP"

 out_2byte; "Output 2 byte of SP status to FIFO"

 ELSIF sb[8..0] = 001100000b THEN
cnt2_en = 1b;
gen_cs3; "Generate chip select and read for the FRAME"

 out_1byte; "Output 2 byte of FRAME status to FIFO"

 ELSIF sb[8..0] =011000000b THEN
cnt5_en = 1b;
gen_cs4; "Generate chip select and read for the PACKET"

 out_4byte; "Output 2 byte of PACKET status to FIFO"

" ELSIF sb[8..0] = 110000000b THEN
" cnt2_en = 1b;
" gen_cs5; "Generate chip select and read for the SYSTEM"
" out_1byte; "Output 1 byte of SYSTEM status to FIFO"

END IF;

"16bit address counter

 IF ((/clr) OR (clr_addr)) THEN
addro = 0;

 ELSIF (addr_en) THEN
addro = addro .+. 1b;

 ELSE
addro = addro;

 END IF;

"3 bit counter from 0 to 5 to count 6 clock cycles for long word

 IF ((/clr) OR (clr_cnt5)) THEN
cnt5 =7;

 ELSIF ((cnt5_en) AND (cnt5 < 5)) THEN
cnt5 = cnt5 .+. 1b;

 ELSIF ((cnt5_en) AND (cnt5 >= 5)) THEN
cnt5 = 0;

 ELSE
cnt5 = cnt5;

 END IF;

"2 bit counter from 0 to 3 to count 4 clock cycles for word

 IF ((/clr) OR (clr_cnt3)) THEN
cnt3 =7;

 ELSIF ((cnt3_en) AND (cnt3 < 3)) THEN
cnt3 = cnt3 .+. 1b;

 ELSIF ((cnt3_en) AND (cnt3 >= 3)) THEN
cnt3 = 0;

 ELSE
cnt3 = cnt3;

 END IF;

"2 bit counter from 0 to 2 to count 3 clock cycles for byte

RLP PCI Card Hardware Definition Document 521-H/W-065

B-16

 IF ((/clr) OR (clr_cnt2)) THEN
cnt2 =3;

 ELSIF ((cnt2_en) AND (cnt2 < 2)) THEN
cnt2 = cnt2 .+. 1b;

 ELSIF ((cnt2_en) AND (cnt2 >= 2)) THEN
cnt2 = 0;

 ELSE
cnt2 = cnt2;

 END IF;

"2bit counter 0-3 to count 4 clock cycles for ctrlreg output

 IF ((/clr) OR (clr_cnt3a)) THEN
cnt3a = 0;

 ELSIF ((cnt3a_en) AND (cnt3a <> 7)) THEN
cnt3a = cnt3a .+. 1b;

 ELSIF ((cnt3a_en) AND (cnt3a = 7)) THEN
cnt3a = 0;

 ELSE
cnt3a = cnt3a;

 END IF;

"1bit counter to generate write signal to the FIFO

 IF (/clr) THEN
cnt1 = 0;

 ELSIF (/cs_fifo AND /we) THEN
cnt1 = cnt1 .+. 1b;

 ELSE
cnt1 = cnt1;

 END IF;

data[31..9] = muxout[31..9];
addr[15..0] = addro[15..0];
fr_addr[11..0] = [ctrlreg[11..4],1,1,1,1];
pk_addr[13..0] = ctrlreg[26..13];
"eod = eod1 + eod2;
"clr_addr = clr_addr1 + clr_addr2 + clr_addr3;
clr_addr = clr_addr1 + clr_addr3;

" This state machine generates the chip selects when
" controller wants to access the bus

STATE_MACHINE bus_cs
STATE_BITS [xb1,ack]
CLOCKED_BY clk
RESET_BY /clr;

STATE wait_access [00b]:
IF ((hold) AND ((sc_done) OR (ack1))) THEN

GOTO delay;
ELSE

GOTO wait_access;
END IF;

STATE delay [01b]:
GOTO cs_decode;

STATE cs_decode [11b]:
 IF (/hold) THEN
 GOTO wait_access;

 ELSE
 GOTO cs_decode;

 IF addr[17..13]=00000b THEN
cs_sc = 0b; "sc chip control register

 ELSIF addr[17..13]=00001b THEN
cs_fifo=0b; " write enable to the status fifo

 ELSIF addr[17..14]=0001b THEN
cs_a[0]=0b; " pifs chip

 ELSIF addr[17..14]=0010b THEN
cs_a[1]=0b; " rsec chip register

 ELSIF addr[17..14]=0011b THEN
cs_a[5]=0b; " rsec memory

 ELSIF addr[17..14]=0100b THEN
cs_a[2]=0b; " sp register

 ELSIF addr[17..14]=0101b THEN
cs_a[3]=0b; " sp frame status

 ELSIF addr[17..15]=011b THEN
cs_a[4]=0b; " sp packet status

 ELSIF addr[17..16]=10b THEN
cs_a[6]=0b; " sp memory space

 END IF;
 END IF;
END bus_cs;

" This state machine loads the control register and collects
" the status

STATE_MACHINE sc

RLP PCI Card Hardware Definition Document 521-H/W-065

B-17

STATE_BITS sb[8..0]
CLOCKED_BY clk
RESET_BY /clr;

STATE idle [000000000b]:
 IF (/cs_sc AND /we AND /addr[0]) THEN

 ctrlreg[26..0] = data[26..0];
 GOTO if_ready;
 ELSE
 ctrlreg[26..0] = ctrlreg[26..0];
 GOTO idle;
 END IF;

STATE if_ready [000000010b]:
IF ((aff) AND (/ack)) THEN
 cnt3a_en = 1b;
 GOTO out_ctrlreg;
ELSE
 GOTO if_ready;
END IF;

STATE out_ctrlreg [000000110b]:
IF cnt3a = 7 THEN

clr_cnt3a = 1b;
clr_addr3 = 1b;

 GOTO check_pifs;
ELSE
 GOTO out_ctrlreg;

 END IF;
STATE check_pifs [000000100b]:

IF ctrlreg[0] THEN
 GOTO collect_pifs;
ELSE

 GOTO check_rsec;
END IF;

STATE collect_pifs [000001100b]:
" IF ((addro[4..0]=11111b) AND (cnt5=5)) THEN

IF ((fsdone) AND (cnt5=5)) THEN
clr_cnt5 = 1b;
clr_addr1 = 1b;

" eod1 = 1b;
 eod = 1b;

GOTO check_rsec;
ELSIF ((cnt5=5) AND (hold OR /aff)) THEN

GOTO pend_state0;
ELSE

GOTO collect_pifs;
END IF;

STATE check_rsec [000001000b]:
IF ctrlreg[1] THEN
 GOTO collect_rsec;
ELSE
 GOTO check_sp;
END IF;

STATE collect_rsec [000011000b]:
" IF ((addro[5..0]=100111b) AND (cnt3=3)) THEN

IF ((rsdone) AND (cnt3=3)) THEN
clr_cnt3 = 1b;
clr_addr1 = 1b;

" eod1 = 1b;
 eod = 1b;

GOTO check_sp;
ELSIF ((cnt3=3) AND (hold OR /aff)) THEN

GOTO pend_state1;
ELSE

GOTO collect_rsec;
END IF ;

STATE check_sp [000010000b]:
IF ctrlreg[2] THEN
 GOTO collect_sp;
ELSE
 GOTO check_frm;
END IF;

STATE collect_sp [000110000b]:
" IF ((addro[6..0]=1101111b) AND (cnt3=3)) THEN

IF ((spdone) AND (cnt3=3)) THEN
clr_cnt3 = 1b;

" clr_addr2 = 1b;
clr_addr1 = 1b;

" eod2 = 1b;
 eod = 1b;

GOTO check_frm;
ELSIF ((cnt3=3) AND (hold OR /aff)) THEN

GOTO pend_state2;
ELSE

GOTO collect_sp;
END IF;

STATE check_frm [000100000b]:
IF ctrlreg[3] THEN
 GOTO collect_frm;
ELSE
 GOTO check_pkt;
END IF;

STATE collect_frm [001100000b]:

RLP PCI Card Hardware Definition Document 521-H/W-065

B-18

IF (fr_eq AND (cnt2=2)) THEN
clr_cnt2 = 1b;

" clr_addr2 = 1b;
clr_addr1 = 1b;

" eod2 = 1b;
 eod = 1b;

GOTO check_pkt;
ELSIF ((cnt2=2) AND (hold OR /aff)) THEN

GOTO pend_state3;
ELSE

GOTO collect_frm;
END IF;

STATE check_pkt [001000000b]:
IF ctrlreg[12] THEN
 GOTO collect_pkt;
ELSE

" GOTO check_sys ;
 GOTO idle ;
END IF;

STATE collect_pkt [011000000b]:
IF (/pk_eq AND (cnt5=5)) THEN

clr_cnt5 = 1b;
" clr_addr2 = 1b;

clr_addr1 = 1b;
" eod2 = 1b;
 eod = 1b;
" GOTO check_sys;

GOTO idle;
ELSIF ((cnt5=5) AND (hold OR /aff)) THEN
 GOTO pend_state4;
ELSE

GOTO collect_pkt;
END IF;

"STATE check_sys [010000000b]:
" IF ctrlreg[25] = 1 THEN
" GOTO collect_sys;
" ELSE
" GOTO idle;
" END IF;
"STATE collect_sys [110000000b]:
" IF ((addro[1..0] = 11b) AND (cnt2=2)) THEN
" clr_cnt2 = 1b;
" clr_addr2 = 1b;
" eod2 = 1b;
" GOTO idle;
" ELSIF ((cnt2=2) AND (hold OR /aff)) THEN
" GOTO pend_state5;
" ELSE
" GOTO collect_sys;
" END IF;
STATE pend_state0 [100000000b]:

IF (hold OR /aff) THEN
GOTO pend_state0;

ELSE
GOTO collect_pifs;

END IF;
STATE pend_state1 [100000001b]:

IF (hold OR /aff) THEN
GOTO pend_state1;

ELSE
GOTO collect_rsec;

END IF;
STATE pend_state2 [100000011b]:

IF (hold OR /aff) THEN
GOTO pend_state2;

ELSE
GOTO collect_sp;

END IF;

STATE pend_state3 [100000010b]:
IF (hold OR /aff) THEN

GOTO pend_state3;
ELSE

GOTO collect_frm;
END IF;

STATE pend_state4 [100000110b]:
IF (hold OR /aff) THEN

GOTO pend_state4;
ELSE

GOTO collect_pkt;
END IF;

"STATE pend_state5 [100000100b]:
" IF (hold OR /aff) THEN
" GOTO pend_state5;
" ELSE
" GOTO collect_sys;
" END IF;
END sc;

RLP PCI Card Hardware Definition Document 521-H/W-065

B-19

"4 bit counter to divide clk by 16 to generate adcck

IF (div <> 15) THEN
div = div .+. 1b;

ELSE
div = 0;

END IF;

adcck = div[3];

" state machine to generate chip select and address to adc

STATE_MACHINE atod
STATE_BITS [adca[1..0],adccs];

STATE dostart [001b]:
GOTO read_zero;

STATE read_zero [000b]:
adcreg[15..8] = adcd;
GOTO refresh;

STATE refresh [011b]:
GOTO read_one;

STATE read_one [010b]:
adcreg[7..0] = adcd;
GOTO dostart;

END atod;

B.4 PCI C ONFIGURATION ROM D ATA L ISTING

This is the data for the AT24C02, the serial EEPROM used by the V962PBC to load PCI
configuration information from. This is the Intel 32-bit Hexidecimal Object (Hex-32) file,
RLP.HEX.

:020000020000FC
:10000000FFFFFFFF00008000000000FF0000000075
:1000100000000000000000000000000000000000E0
:1000200000000000000000000000000000000000D0
:1000300000000000000000000000000000010000BF
:1000400013000000000000000C0000000C00020083
:1000500000000000000000000000000000000000A0
:100060000000000000000000000000000000000090
:10007000F0F000000000000000E0000000000000C0
:00000001FF

RLP PCI Card Hardware Definition Document 521-H/W-065

C-1

APPENDIX C
PARTS LIST

This appendix contains a detailed parts list for the RLP.

RLP PCI Card Hardware Definition Document 521-H/W-065

D-1

APPENDIX D
ENGINEERING CHANGE ORDERS

This appendix includes photocopies of all released Engineering Change Orders (ECOs) issued
against the assembly revision at the time of document release, as listed in Table D-1.

Table D-1. Directory of Engineering Change Orders

ECO Number Issue Date

RLP PCI Card Hardware Definition Document 521-H/W-065

D-1

APPENDIX E
TEST PROCEDURES

E.1 I NTRODUCTION

This section will be written after experience with the hardware has been obtained. The following
is example/template material.

RLP PCI Card Hardware Definition Document 521-H/W-065

D-2

Code 521
Integration and Testing

Group
Card-Level

Test Procedures
Acceptance

This form is to be used to verify and document that test procedures have been used and accepted by Integration and
Testing (I&T), the responsible design engineer, and Technical Publications. The actual test procedures, which comprise
Appendix E in the associated Hardware Definition Document (HDD), will not be incorporated into the document without
completion of this form. This form will be reproduced in the final version of the HDD; please write legibly.

Test procedure acceptance consists of the following three stages:

Date
Test

Conductor
(Initials)

Responsible
Engineer
(Initials)

Description

Test procedures have been used by the Test
Conductor with the assistance of the responsible
engineer to test one card.

Step 1

Step 2

Test procedures have been used by the Test Conductor to test one
card without the assistance of the responsible engineer.

Following review with Test Conductor, I&T
Supervisor approves test procedures and submits
to Technical Publications.

Technical
Publications

(Initials)

I&T
Supervisor

(Initials)

Please contact the Integration and Testing Supervisor for questions regarding these procedures.

NOTES:

Date

Date

Test
Conductor

(Initials)

Step 3

Description

Description

Figure E-1. Integration and Testing Card-Level Test Procedures Acceptance Form

E.1.1 EXPECTED TEST RESULTS

RLP PCI Card Hardware Definition Document 521-H/W-065

D-3

E.1.2 PROCEDURE OUTLINE

Table E-1. Memory Map with Chip Selects

Chip
Select

Address
(Hex)

Device/Function

CS0

CS1

CS2

CS3

CS4

CS5

CS6

CS7

CS8

CS9

CS10

CS11

E.1.3 TESTING REQUIREMENTS

Figure E-2. Example Start File

E.1.3.1 Memory Tests

E.1.3.2 Register Tests

E.1.3.3 Chip Selects

E.1.3.4 Resets

RLP PCI Card Hardware Definition Document 521-H/W-065

D-4

E.1.3.5 Data Flow

E.1.3.6 Rate Testing

E.1.4 APPLICABLE DOCUMENTS

E.2 C ARD T EST P ROCEDURES

E.2.1 STEP 1 TO STEP N

E.3 T ESTPOINT S IGNALS

Table E-2. Example Testpoint

Pin Number Signal
1 GND
2 D<1>
3 D<3>
4 D<5>
5 D<7>
6 CLK8X
7 CLK4XINV
8 SELBTD
9 EOF
10 GND
11 GND
12 Used for clock signal
13 EODS
14 EOSYNC
15 CLK4X
16 PCLK
17 D<6>
18 D<4>
19 D<2>
20 D<0>

Figure E-5. Example of a Diagram that Illustrates Testpoints

